A241500 Triangle T(n,k): number of ways of partitioning the n-element multiset {1,1,2,3,...,n-1} into exactly k nonempty parts, n>=1 and 1<=k<=n.
1, 1, 1, 1, 2, 1, 1, 5, 4, 1, 1, 11, 16, 7, 1, 1, 23, 58, 41, 11, 1, 1, 47, 196, 215, 90, 16, 1, 1, 95, 634, 1041, 640, 176, 22, 1, 1, 191, 1996, 4767, 4151, 1631, 315, 29, 1, 1, 383, 6178, 21001, 25221, 13587, 3696, 526, 37, 1, 1, 767, 18916, 90055, 146140, 105042, 38409, 7638, 831, 46, 1
Offset: 1
Examples
There are 58 ways to partition {1,1,2,3,4,5} into three nonempty parts. The first few rows are: 1; 1, 1; 1, 2, 1; 1, 5, 4, 1; 1, 11, 16, 7, 1; 1, 23, 58, 41, 11, 1; 1, 47, 196, 215, 90, 16, 1; 1, 95, 634, 1041, 640, 176, 22, 1; 1, 191, 1996, 4767, 4151, 1631, 315, 29, 1; 1, 383, 6178, 21001, 25221, 13587, 3696, 526, 37, 1; ...
Crossrefs
Programs
-
PARI
T(n,k) = stirling(n-1,k,2) + stirling(n-1,k-1,2) + binomial(k,2)*stirling(n-2,k,2); \\ Michel Marcus, Apr 24 2014