A035098 Near-Bell numbers: partitions of an n-multiset with multiplicities 1, 1, 1, ..., 1, 2.
1, 2, 4, 11, 36, 135, 566, 2610, 13082, 70631, 407846, 2504071, 16268302, 111378678, 800751152, 6027000007, 47363985248, 387710909055, 3298841940510, 29119488623294, 266213358298590, 2516654856419723, 24566795704844210
Offset: 1
Keywords
Examples
a(3)=4 because there are 4 ways to partition the multiset {1,2,2} (with multiplicities {1,2}): {{1,2,2}} {{1,2},{2}} {{1},{2,2}} {{1},{2},{2}}.
References
- D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - N. J. A. Sloane, Dec 30 2018
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..576 (first 200 terms from Vincenzo Librandi)
- M. Griffiths, Generalized Near-Bell Numbers, JIS 12 (2009) 09.5.7.
- M. Griffiths, I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
- Martin Griffiths, Generating Functions for Extended Stirling Numbers of the First Kind, Journal of Integer Sequences, 17 (2014), #14.6.4.
Crossrefs
Programs
-
Maple
with(combinat): a:= n-> floor(1/2*(bell(n-2)+bell(n-1)+bell(n))): seq(a(n), n=1..25); # Zerinvary Lajos, Oct 07 2007
-
Mathematica
f[n_] := Sum[ StirlingS2[n, k] ((k + 1) (k + 2)/2 + 1), {k, 0, n}]; Array[f, 22, 0] f[n_] := (BellB[n] + BellB[n + 1] + BellB[n + 2])/2; Array[f, 22, 0] Range[0, 21]! CoefficientList[ Series[ (1 + Exp@ x)^2/2 Exp[ Exp@ x - 1], {x, 0, 21}], x] (* 3 variants by Robert G. Wilson v, Jan 13 2011 *) Join[{1},Total[#]/2&/@Partition[BellB[Range[0,30]],3,1]] (* Harvey P. Dale, Jan 02 2019 *)
Formula
Sum_{k=0..n} Stirling2(n, k)*((k+1)*(k+2)/2+1). E.g.f.: 1/2*(1+exp(x))^2*exp(exp(x)-1). (1/2)*(Bell(n)+Bell(n+1)+Bell(n+2)). - Vladeta Jovovic, Sep 23 2003 [for offset -1]
a(n) ~ Bell(n)/2 * (1 + LambertW(n)/n). - Vaclav Kotesovec, Jul 28 2021
Extensions
More terms from Vladeta Jovovic, Sep 23 2003
Comments