A241665 Number of iterations of A241663 needed to reach either 0 or 1.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 3, 1, 1, 1, 4, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1
Offset: 1
Keywords
Examples
A241663(11)=7, A241663(7)=3, A241663(3)=0. Thus, a(11)=3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
- C. Defant, On Arithmetic Functions Related to Iterates of the Schemmel Totient Functions, J. Int. Seq. 18 (2015) # 15.2.1
- Colin Defant, Python program
Programs
-
PARI
A241663(n) = {my(f = factor(n)); prod(i=1, #f~, if ((f[i, 1] == 2) || (f[i, 1] == 3), 0, f[i, 1]^(f[i, 2]-1)*(f[i, 1]-4))); } \\ From A241663 A241665(n) = { my(s=(1==n)); while(n>1, n = A241663(n); s++); (s); }; \\ Antti Karttunen, Oct 01 2018
-
Python
# See Defant link. Enter m=4, as well as starting and ending values of n. The third string of numbers will be this sequence.
Extensions
More terms from Alois P. Heinz, Apr 30 2014
Terms a(88) .. a(105) from Antti Karttunen, Oct 01 2018
Comments