cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241872 Number of ascent sequences of length n with exactly two descents.

Original entry on oeis.org

4, 53, 429, 2748, 15342, 78339, 376159, 1728458, 7689744, 33393393, 142376385, 598555320, 2489143090, 10264270175, 42048021027, 171366151974, 695585112660, 2814484154445, 11359684937605, 45759869226260, 184050366838134, 739376299832763, 2967455421451239
Offset: 5

Views

Author

Joerg Arndt and Alois P. Heinz, Apr 30 2014

Keywords

Crossrefs

Column k=2 of A238858.

Programs

  • Maple
    gf := -(12*x^2-15*x+4)*x^5/((4*x-1)*(x-1)*(3*x-1)^2*(2*x-1)^3):
    a:= n-> coeff(series(gf, x, n+1), x, n):
    seq(a(n), n=5..30);
  • Mathematica
    CoefficientList[Series[-(12 x^2 - 15 x + 4)/((4 x - 1) (x - 1) (3 x - 1)^2 (2 x - 1)^3), {x, 0, 40}], x] (* Vincenzo Librandi, May 06 2014 *)
    LinearRecurrence[{17,-121,467,-1054,1388,-984,288},{4,53,429,2748,15342,78339,376159},23] (* Ray Chandler, Jul 14 2015 *)

Formula

G.f.: -(12*x^2-15*x+4)*x^5/((4*x-1)*(x-1)*(3*x-1)^2*(2*x-1)^3).
a(n) = 4^n/6 - 3^(n-1)*(2*n+1)/4 + 2^(n-4)*(n+2)*(n-1) + 1/12. - Vaclav Kotesovec, May 03 2014
Recurrence: a(n) = 288*a(n-7) - 984*a(n-6) + 1388*a(n-5) - 1054*a(n-4) + 467*a(n-3) - 121*a(n-2) + 17*a(n-1). - Fung Lam, May 05 2014