cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A242037 a(n) is the smallest k such that in the interval [1,k] of sequence A242034 all odd primes <= prime(n) are present.

Original entry on oeis.org

1, 2, 23, 23, 63, 63, 120, 228, 228, 386, 460, 460, 602, 896, 1096, 1096, 1416, 1416, 1416, 3158, 3158, 3158, 3204, 3438, 3438, 3966, 3966, 3966, 8229, 8229, 8229, 8229, 8229, 8229, 8229, 8229, 8229, 8294, 8593, 8593, 11125, 11125, 11559, 11559, 12216, 13594
Offset: 2

Views

Author

Vladimir Shevelev, Aug 12 2014

Keywords

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]]; (* least prime factor *)
    A242034=Map[lpf[#-3]&,Select[Range[6,100000,2],lpf[#-1]>lpf[#-3]&](*A243937*)];
    pos={};NestWhile[#+1&,2,(AppendTo[pos,Position[A242034,Prime[#],1,1]];!Last[pos]=={})&];
    A242037=Rest[FoldList[Max,-Infinity,Flatten[pos]]] (* Peter J. C. Moses, Aug 14 2014 *)

Extensions

More terms from Peter J. C. Moses, Aug 12 2014

A242064 Smallest k such that the union of {A242033(i): 1 <= i <= k} and {A242034(i): 1 <= i <= k} includes all primes {3, ..., prime(n)}.

Original entry on oeis.org

1, 2, 9, 9, 36, 36, 81, 220, 220, 386, 386, 386, 434, 521, 896, 896, 896, 1167, 1167, 1695, 2065, 2096, 2096, 2968, 2968, 2968, 2968, 3341, 4561, 4561, 4561, 4561, 4672, 4672, 5964, 6203, 7158, 8294, 8294, 8294, 8740, 8740, 10452, 10452, 11075, 11075, 12092
Offset: 2

Views

Author

Vladimir Shevelev, Aug 13 2014

Keywords

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]];(*least prime factor*)
    A242033=Map[lpf[#-1]&,Select[Range[6,100000,2],lpf[#-1]A245024*)];
    A242034=Map[lpf[#-3]&,Select[Range[6,100000,2],lpf[#-1]>lpf[#-3]&](*A243937*)];
    pos={};NestWhile[#+1&,2,(AppendTo[pos,Min[Position[A242033,Prime[#],1,1],Position[A242034,Prime[#],1,1]/.{}->0]];!Last[pos]==0)&];
    A242064=Rest[FoldList[Max,-Infinity,Flatten[pos]]] (* Peter J. C. Moses, Aug 14 2014 *)

Extensions

More terms from Peter J. C. Moses, Aug 14 2014

A242033 a(n) = lpf(A245024(n)-1), where lpf = least prime factor (A020639).

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 3, 3, 7, 3, 5, 3, 3, 3, 3, 3, 5, 3, 7, 3, 3, 3, 3, 5, 3, 3, 3, 7, 3, 3, 5, 3, 3, 3, 3, 13, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 3, 3, 5, 3, 3, 3, 11, 3, 7, 3, 5, 3, 3, 3, 3, 3, 5, 3, 7, 3, 3, 3, 11, 3, 5, 3, 3, 3, 7, 3, 3, 5, 3, 19, 3, 3, 3, 3, 5
Offset: 1

Views

Author

Vladimir Shevelev, Aug 12 2014

Keywords

Comments

Conjecture. The sequence contains all odd primes.
The conjecture is true. Consider n-1 = p*q where p is an odd prime and q is a prime > p such that q == p^(-1) mod r for every odd prime r < p. Such primes q exist by Dirichlet's theorem on primes in arithmetic progressions. - Robert Israel, Aug 13 2014

Crossrefs

Programs

  • Maple
    lpf:= n -> min(numtheory:-factorset(n)):
    L:= [seq(lpf(2*i+1),i=1..1000)]:
    L[select(i->L[i] < L[i-1], [$2..nops(L)])]; # Robert Israel, Aug 13 2014
  • Mathematica
    lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]]; (* least prime factor *)
    A242033=Map[lpf[#-1]&,Select[Range[6,300,2],lpf[#-1]A245024*) ] (* Peter J. C. Moses, Aug 14 2014 *)

Extensions

More terms from Peter J. C. Moses, Aug 12 2014

A242036 Smallest k such that in the interval [1,k] in A242033 all odd primes <= prime(n) are present.

Original entry on oeis.org

1, 4, 9, 54, 54, 88, 88, 220, 220, 444, 444, 570, 570, 570, 896, 1510, 1510, 1510, 1510, 1695, 2065, 2249, 2249, 2968, 2968, 2968, 2968, 3341, 4561, 4561, 4561, 4942, 4942, 6471, 6471, 6471, 7158, 9202, 9202, 10915, 10915, 10915, 10915, 12312, 12312, 12312
Offset: 2

Views

Author

Vladimir Shevelev, Aug 12 2014

Keywords

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]]; (* least prime factor *)
    A242033=Map[lpf[#-1]&,Select[Range[6,100000,2],lpf[#-1]A245024*)];
    pos={};NestWhile[#+1&,2,(AppendTo[pos,Position[A242033,Prime[#],1,1]];!Last[pos]=={})&];
    A242036=Rest[FoldList[Max,-Infinity,Flatten[pos]]] (* Peter J. C. Moses, Aug 14 2014 *)

Extensions

More terms from Peter J. C. Moses, Aug 12 2014

A242059 lpf_3(A242057(n)-1), where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n.

Original entry on oeis.org

1, 5, 7, 5, 1, 11, 5, 13, 5, 7, 5, 7, 5, 23, 5, 1, 5, 7, 5, 11, 5, 37, 5, 7, 5, 43, 7, 5, 47, 11, 5, 17, 5, 53, 7, 5, 13, 5, 61, 5, 7, 5, 67, 7, 5, 11, 71, 5, 13, 5, 7, 5, 1, 11, 5, 7, 5, 7, 5, 31, 5, 5, 7, 5, 103, 5, 11, 17, 5, 7, 37, 5, 113, 11, 7, 5, 13, 5
Offset: 1

Views

Author

Vladimir Shevelev, Aug 13 2014

Keywords

Comments

An analog of A242033.

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]];
    lpf3[n_]:=lpf3[n]=If[#==1,1,lpf[#]]&[n/3^IntegerExponent[n,3]]
    Map[lpf3[#-1]&,Select[Range[4,300,2],lpf3[#-1]Peter J. C. Moses, Aug 13 2014 *)
  • PARI
    lpf3(n)=m=n/3^valuation(n, 3); if(m>1, factor(m)[1,1], 1)
    apply(n->lpf3(n-1), select(n->lpf3(n-1)Jens Kruse Andersen, Aug 19 2014

Extensions

More terms from Peter J. C. Moses, Aug 13 2014

A242060 Lpf_3(A242058(n)-3), where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n.

Original entry on oeis.org

1, 5, 1, 11, 5, 17, 7, 1, 29, 5, 13, 41, 5, 7, 17, 5, 19, 59, 5, 23, 71, 5, 7, 1, 5, 29, 7, 5, 11, 101, 5, 107, 37, 5, 7, 11, 5, 43, 5, 137, 5, 7, 149, 5, 7, 5, 13, 19, 5, 59, 179, 5, 7, 191, 5, 197, 5, 11, 5, 7, 13, 5, 227, 7, 5, 79, 239, 1, 5, 13, 83, 5, 7
Offset: 1

Views

Author

Vladimir Shevelev, Aug 13 2014

Keywords

Comments

An analog of A242034. Records are lesser numbers of twin primes.

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]];
    lpf3[n_]:=lpf3[n]=If[#==1,1,lpf[#]]&[n/3^IntegerExponent[n,3]]
    Map[lpf3[#-3]&,Select[Range[4,300,2],lpf3[#-1]>lpf3[#-3]&]](* Peter J. C. Moses, Aug 13 2014 *)

Extensions

More terms from Peter J. C. Moses, Aug 13 2014

A242065 Smallest k such that the union of {A242059(i): 1 <= i <= k} and {A242060(i): 1 <= i <= k} includes all primes {5, ..., prime(n)}.

Original entry on oeis.org

2, 3, 4, 8, 8, 17, 17, 17, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 179, 179, 179, 179, 179, 179, 179, 179, 264, 264, 264, 319, 319, 319, 319, 365, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112, 4372, 4372, 4372, 4372, 4372, 15504, 15504
Offset: 3

Views

Author

Vladimir Shevelev, Aug 13 2014

Keywords

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]];(*least prime factor*)
    lpf3[n_]:=lpf3[n]=If[#==1,1,lpf[#]]&[n/3^IntegerExponent[n,3]];
    A242059=Map[lpf3[#-1]&,Select[Range[4,100000,2],lpf3[#-1]A242057*)];
    A242060=Map[lpf3[#-3]&,Select[Range[4,100000,2],lpf3[#-1]>lpf3[#-3]&](*A242058*)];
    pos={};NestWhile[#+1&,3,(AppendTo[pos,Min[Position[A242059,Prime[#],1,1],Position[A242060,Prime[#],1,1]/.{}->0]];!Last[pos]==0)&];
    A242065=Rest[FoldList[Max,-Infinity,Flatten[pos]]] (* Peter J. C. Moses, Aug 14 2014 *)

Extensions

More terms from Peter J. C. Moses, Aug 14 2014

A242066 The smallest even k such that lpf_3(k-3) > lpf_3(k-1) >= p_n, where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n.

Original entry on oeis.org

16, 22, 34, 40, 70, 70, 70, 112, 112, 112, 130, 130, 142, 160, 184, 184, 202, 214, 310, 310, 310, 310, 310, 310, 310, 340, 340, 340, 382, 412, 412, 490, 490, 490, 490, 490, 502, 544, 544, 544, 574, 580, 634, 634, 634, 754, 754, 754, 754, 754, 754, 754, 772
Offset: 3

Views

Author

Vladimir Shevelev, Aug 13 2014

Keywords

Comments

a(n)-3 and (a(n)-1)/3 are primes.

Crossrefs

Programs

  • Mathematica
    lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]];(*least prime factor*)
    lpf3[n_]:=lpf3[n]=If[#==1,1,lpf[#]]&[n/3^IntegerExponent[n,3]];
    Table[NestWhile[#+2&,2,!(lpf3[#-3]>lpf3[#-1]>=Prime[n])&],{n,3,100}] (* Peter J. C. Moses, Aug 14 2014 *)
Showing 1-8 of 8 results.