A242059 lpf_3(A242057(n)-1), where lpf_3(n) = lpf(n/3^t) (cf. A020639) such that 3^t (t>=0) is the maximal power of 3 which divides n.
1, 5, 7, 5, 1, 11, 5, 13, 5, 7, 5, 7, 5, 23, 5, 1, 5, 7, 5, 11, 5, 37, 5, 7, 5, 43, 7, 5, 47, 11, 5, 17, 5, 53, 7, 5, 13, 5, 61, 5, 7, 5, 67, 7, 5, 11, 71, 5, 13, 5, 7, 5, 1, 11, 5, 7, 5, 7, 5, 31, 5, 5, 7, 5, 103, 5, 11, 17, 5, 7, 37, 5, 113, 11, 7, 5, 13, 5
Offset: 1
Keywords
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
lpf[n_]:=lpf[n]=First[First[FactorInteger[n]]]; lpf3[n_]:=lpf3[n]=If[#==1,1,lpf[#]]&[n/3^IntegerExponent[n,3]] Map[lpf3[#-1]&,Select[Range[4,300,2],lpf3[#-1]
Peter J. C. Moses, Aug 13 2014 *) -
PARI
lpf3(n)=m=n/3^valuation(n, 3); if(m>1, factor(m)[1,1], 1) apply(n->lpf3(n-1), select(n->lpf3(n-1)
Jens Kruse Andersen, Aug 19 2014
Extensions
More terms from Peter J. C. Moses, Aug 13 2014
Comments