A242062 Expansion of x * (1 - x^12) / ((1 - x^3) * (1 - x^4) * (1 - x^7)) in powers of x.
0, 1, 0, 0, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 2, 3, 2, 2, 3, 3, 2, 3, 4, 3, 3, 4, 4, 3, 4, 5, 4, 4, 5, 5, 4, 5, 6, 5, 5, 6, 6, 5, 6, 7, 6, 6, 7, 7, 6, 7, 8, 7, 7, 8, 8, 7, 8, 9, 8, 8, 9, 9, 8, 9, 10, 9, 9, 10, 10, 9, 10, 11, 10, 10, 11, 11, 10, 11, 12, 11, 11, 12
Offset: 0
Keywords
Examples
G.f. = x + x^4 + x^5 + x^7 + 2*x^8 + x^9 + x^10 + 2*x^11 + 2*x^12 + x^13 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
Crossrefs
Cf. A131372.
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1 -x+x^3-x^5+x^6)/(1-x-x^7+x^8))); // G. C. Greubel, Aug 05 2018 -
Maple
a:= n -> [0, 1, 0, 0, 1, 1, 0][n mod 7 + 1] + floor(n/7): seq(a(n), n=0..20); # Robert Israel, Aug 13 2014
-
Mathematica
a[ n_] := Quotient[ n+3, 7] + {1, 0, 0, 0, 0, -1, 0}[[Mod[ n, 7, 1]]]; a[ n_] := Sign[n] * SeriesCoefficient[ x * (1 - x^12) / ((1 - x^3) * (1 - x^4) * (1 - x^7)), {x, 0, Abs[n]}]; CoefficientList[Series[x (1 - x + x^3 - x^5 + x^6)/(1 - x - x^7 + x^8), {x, 0, 100}], x] (* Vincenzo Librandi, Aug 14 2014 *) LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,1,0,0,1,1,0,1},90] (* Harvey P. Dale, Sep 29 2024 *)
-
PARI
{a(n) = (n+3)\7 + (n%7==1) - (n%7==6)};
-
PARI
{a(n) = sign(n) * polcoeff( x * (1 - x^12) / ((1 - x^3) * (1 - x^4) * (1 - x^7)) + x * O(x^abs(n)), abs(n))};
Formula
Euler transform of length 12 sequence [0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, -1].
G.f.: x * (1 - x + x^3 - x^5 + x^6) / (1 - x - x^7 + x^8).
G.f.: x / (1 - x^3 / (1 - x / (1 + x / (1 - x^5 / (1 - x / (1 + x^2 / (1 - x^2))))))).
a(n) = -a(-n) = a(n-7) + 1 = a(n-1) + a(n-7) - a(n-8) for all n in Z.
0 = 2*a(n) - a(n+1) + a(n+2) - 2*a(n+3) + (a(n+1) - a(n+2))^2 for all n in Z.
a(n+1) - a(n) = A131372(n).