cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242473 Binomial(2p-1,p-1) modulo p^4, with p=prime(n).

Original entry on oeis.org

3, 10, 126, 1716, 1332, 2198, 14740, 61732, 158172, 268280, 29792, 557184, 2343315, 2623732, 3218514, 5657327, 11911983, 12710937, 7218313, 12526886, 24119055, 18735483, 13151102, 19034164, 87616609, 86545285, 2185455, 80852839, 137273075, 106774379, 20483831, 69690822, 20570825
Offset: 1

Views

Author

Felix Fröhlich, May 26 2014

Keywords

Comments

A value of 1 indicates a Wolstenholme prime.

Crossrefs

Cf. A088164, A099905, A099906, A099907. Subsequence of A099908.

Programs

  • Mathematica
    Table[Mod[Binomial[2p-1,p-1],p^4],{p,Prime[Range[30]]}] (* Harvey P. Dale, Jun 26 2017 *)
  • PARI
    forprime(n=2, 10^2, m=(binomial(2*n-1, n-1)%n^4); print1(m, ", "));
    
  • Python
    from _future_ import division
    from sympy import isprime
    A242473_list, b = [], 1
    for n in range(1,10**4):
        if isprime(n):
            A242473_list.append(b % n**4)
        b = b*2*(2*n+1)//(n+1) # Chai Wah Wu, Jan 26 2016
    
  • Python
    from sympy import Mod, binomial, prime
    def A242473(n): return int(Mod(binomial(2*(p:=prime(n))-1,p-1,evaluate=False),p**4)) # Chai Wah Wu, Apr 24 2025