A300947
Primes of form (2*k)! + k! + 1.
Original entry on oeis.org
3, 727, 20922789928321, 403291461126605641811020801, 523022617466601111760007224221719391608832001
Offset: 1
-
select(isprime,[seq(factorial(2*k)+factorial(k)+1,k=0..600)]); # Muniru A Asiru, May 27 2018
-
lista(nn) = {for(k=0, nn, if(ispseudoprime(p=(2*k)!+k!+1), print1(p, ", ")));} \\ Altug Alkan, Mar 22 2018
A303737
Numbers k such that (2*k)! + k! - 1 is prime.
Original entry on oeis.org
1, 4, 18, 49, 60, 82, 321, 6328
Offset: 1
1 is a term because (2*1)! + 1! - 1 = 2 which is a prime.
4 is a term because (2*4)! + 4! - 1 = 40343 which is a prime.
-
select(k->isprime(factorial(2*k)+factorial(k)-1),[$1..1000]);
-
isok(k) = isprime((2*k)! + k! - 1); \\ Michel Marcus, May 28 2018
A303738
Primes of form (2*k)! + k! - 1.
Original entry on oeis.org
2, 40343, 371993326789901217467999454553208905727999
Offset: 1
Showing 1-3 of 3 results.
Comments