cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A089359 Primes which can be partitioned into distinct factorials. 0! and 1! are not considered distinct.

Original entry on oeis.org

2, 3, 7, 31, 127, 151, 727, 751, 5167, 5791, 5881, 40351, 40471, 41047, 41161, 45361, 45481, 362911, 363751, 368047, 368647, 368791, 403327, 403951, 408241, 408271, 408361, 409081, 3628927, 3629671, 3633991, 3634591, 3669241, 3669847, 3669961
Offset: 1

Views

Author

Amarnath Murthy, Nov 07 2003

Keywords

Examples

			From _Seiichi Manyama_, Mar 24 2018: (Start)
n | a(n) |
--+------+------------------
1 |    2 | 2!
2 |    3 | 2! + 1!
3 |    7 | 3! + 1!
4 |   31 | 4! + 3! + 1!
5 |  127 | 5! + 3! + 1!
6 |  151 | 5! + 4! + 3! + 1! (End)
		

Crossrefs

Programs

  • Python
    from sympy import isprime
    def facbase(k, f):
        return sum(f[i] for i, bi in enumerate(bin(k)[2:][::-1]) if bi == "1")
    def auptoN(N): # terms up to N factorial-base digits; 20 generates b-file
        f = [factorial(i) for i in range(1, N+1)]
        return list(filter(isprime, (facbase(k, f) for k in range(2**N))))
    print(auptoN(10)) # Michael S. Branicky, Oct 15 2022

Extensions

More terms from Vladeta Jovovic, Nov 08 2003

A242487 Numbers k such that (2*k)! + k! + 1 is prime.

Original entry on oeis.org

0, 3, 8, 13, 19, 423, 585, 2746, 2855
Offset: 1

Views

Author

Seiichi Manyama, Mar 22 2018

Keywords

Comments

a(10) > 10000. - Michael S. Branicky, May 03 2025

Examples

			0! + 0! + 1 =   3 is prime.
6! + 3! + 1 = 727 is prime.
		

Crossrefs

A300947 gives the primes.

Programs

  • Maple
    select(k->isprime(factorial(2*k)+factorial(k)+1),[$0..600]); # Muniru A Asiru, May 27 2018
  • Mathematica
    Flatten[{0, Select[Range[100], PrimeQ[(2*#)! + #! + 1] &]}] (* Vaclav Kotesovec, Mar 25 2018 *)
  • PARI
    isok(k) = ispseudoprime((2*k)!+k!+1); \\ Altug Alkan, Mar 22 2018

Extensions

a(8)-a(9) from Michael S. Branicky, Apr 16 2023

A303737 Numbers k such that (2*k)! + k! - 1 is prime.

Original entry on oeis.org

1, 4, 18, 49, 60, 82, 321, 6328
Offset: 1

Views

Author

Muniru A Asiru, May 27 2018

Keywords

Comments

a(9) > 10000. - Giovanni Resta, Jun 07 2018

Examples

			1 is a term because (2*1)! + 1! - 1 = 2 which is a prime.
4 is a term because (2*4)! + 4! - 1 = 40343 which is a prime.
		

Crossrefs

Cf. A242487, A300947, A303738 (corresponding primes).

Programs

  • Maple
    select(k->isprime(factorial(2*k)+factorial(k)-1),[$1..1000]);
  • PARI
    isok(k) = isprime((2*k)! + k! - 1); \\ Michel Marcus, May 28 2018

Extensions

a(8) from Giovanni Resta, Jun 07 2018

A303738 Primes of form (2*k)! + k! - 1.

Original entry on oeis.org

2, 40343, 371993326789901217467999454553208905727999
Offset: 1

Views

Author

Muniru A Asiru, May 27 2018

Keywords

Comments

a(4) has 154 digits and is too large to be included.

Crossrefs

Programs

  • Maple
    f:=factorial: select(isprime,[seq(f(2*k)+f(k)-1,k=1..600)]);

Formula

a(n) = (2*A303737(n))! + A303737(n)! - 1.
Showing 1-4 of 4 results.