A242522 Number of cyclic arrangements of S={1,2,...,n} such that the difference between any two neighbors is at least 2.
0, 0, 0, 0, 1, 5, 33, 245, 2053, 19137, 196705, 2212037, 27029085, 356723177, 5058388153, 76712450925, 1239124984693, 21241164552785, 385159565775633, 7365975246680597, 148182892455224845, 3128251523599365177, 69149857480654157545, 1597343462243140957757
Offset: 1
Keywords
Examples
The 5 cycles of length n=6 having this property are {1,3,5,2,4,6}, {1,3,5,2,6,4}, {1,3,6,4,2,5}, {1,4,2,5,3,6}, {1,4,2,6,3,5}.
Links
- Andrew Woods, Table of n, a(n) for n = 1..100 (terms up to a(24) from _Hiroaki Yamanouchi_, Aug 28 2014)
- F. C. Holroyd and W. J. G. Wingate, Cycles in the complement of a tree or other graph, Discrete Math., 55 (1985), 267-282.
- S. Sykora, On Neighbor-Property Cycles, Stan's Library, Volume V, 2014.
- Eric Weisstein's World of Mathematics, Dipyramidal Graph
- Eric Weisstein's World of Mathematics, Hamiltonian Cycle
- Eric Weisstein's World of Mathematics, Path Complement Graph
- Eric Weisstein's World of Mathematics, Radio Labeling
- Eric Weisstein's World of Mathematics, Wheel Graph
Crossrefs
Programs
-
Mathematica
a[n_ /; n < 5] = 0; a[5] = 1; a[6] = 5; a[n_] := a[n] = n a[n - 1] - (n - 5) a[n - 2] - (n - 4) a[n - 3] + (n - 4) a[n - 4]; Array[a, 24] (* Jean-François Alcover, Oct 07 2017 *) Join[{0, 0}, RecurrenceTable[{a[n] == n a[n - 1] - (n - 5) a[n - 2] - (n - 4) a[n - 3] + (n - 4) a[n - 4], a[3] == a[4] == 0, a[5] == 1, a[6] == 5}, a, {n, 20}]] (* Eric W. Weisstein, Apr 12 2018 *)
Formula
a(n) = A002493(n)/(2*n), n>1. - Andrew Woods, Dec 08 2014
a(n) = Sum_{k=1..n} (-1)^(n-k)*k!*A102413(n,k) / (2*n), n>2. - Andrew Woods after Vladeta Jovovic, Dec 08 2014
a(n) = (n-1)!/2 + sum_{i=1..n-1} ((-1)^i * (n-i-1)! * sum_{j=0..i-1} (2^j * C(i-1,j) * C(n-i,j+1))), for n>=5. - Andrew Woods, Jan 08 2015
a(n) = n a(n-1) - (n-5) a(n-2) - (n-4) a(n-3) + (n-4) a(n-4), for n>6. - Jean-François Alcover, Oct 07 2017
Comments