cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242587 The number of conjugacy classes of n X n matrices over F_3.

Original entry on oeis.org

1, 3, 12, 39, 129, 399, 1245, 3783, 11514, 34734, 104754, 314922, 946623, 2842077, 8532147, 25603788, 76830033, 230513439, 691598901, 2074870002, 6224790639, 18674600664, 56024355396, 168073769199, 504222998115, 1512671142432, 4538018555652, 13614062210490
Offset: 0

Views

Author

R. J. Mathar, May 18 2014

Keywords

Comments

Apparently the Euler transform of A001867.

Crossrefs

Cf. A070933 (over F_2).
Column k=3 of A246935.

Programs

  • Maple
    A242587 := proc(n)
        local r,x ;
        if n  = 0 then
            1;
        else
            1/mul(1-3*x^r,r=1..n) ;
            convert(%,parfrac,x) ;
            coeftayl(%,x=0,n) ;
        end if;
    end proc:
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n, 0, 3*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 07 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, 3*b[n-i, i]]]] ; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 03 2015, after Alois P. Heinz *)
    (O[x]^20 - 2/QPochhammer[3, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • Maxima
    S(n, m):=if n=0 then 1 else if nVladimir Kruchinin, Sep 07 2014 */

Formula

G.f.: 1/Product_{r>=1} (1-3*x^r).
a(n) = S(n,1), where S(n,m) = sum(k=m..n/2, 3*S(n-k,k))+3, S(n,n)=3, S(0,m)=1, S(n,m)=0 for nVladimir Kruchinin, Sep 07 2014
a(n) ~ c * 3^n, where c = Product_{k>=1} 1/(1-1/3^k) = 1.7853123419985341903674... . - Vaclav Kotesovec, Mar 19 2015
G.f.: Sum_{i>=0} 3^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 12 2018