cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A246935 Number A(n,k) of partitions of n into k sorts of parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 14, 5, 0, 1, 5, 20, 39, 34, 7, 0, 1, 6, 30, 84, 129, 74, 11, 0, 1, 7, 42, 155, 356, 399, 166, 15, 0, 1, 8, 56, 258, 805, 1444, 1245, 350, 22, 0, 1, 9, 72, 399, 1590, 4055, 5876, 3783, 746, 30, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2014

Keywords

Comments

In general, column k > 1 is asymptotic to c * k^n, where c = Product_{j>=1} 1/(1-1/k^j) = 1/QPochhammer[1/k,1/k]. - Vaclav Kotesovec, Mar 19 2015
When k is a prime power greater than 1, A(n,k) is the number of conjugacy classes of n X n matrices over a field of size k. - Geoffrey Critzer, Nov 11 2022

Examples

			A(2,2) = 6: [2a], [2b], [1a,1a], [1a,1b], [1b,1a], [1b,1b].
Square array A(n,k) begins:
  1,  1,   1,    1,     1,      1,      1,      1, ...
  0,  1,   2,    3,     4,      5,      6,      7, ...
  0,  2,   6,   12,    20,     30,     42,     56, ...
  0,  3,  14,   39,    84,    155,    258,    399, ...
  0,  5,  34,  129,   356,    805,   1590,   2849, ...
  0,  7,  74,  399,  1444,   4055,   9582,  19999, ...
  0, 11, 166, 1245,  5876,  20455,  57786, 140441, ...
  0, 15, 350, 3783, 23604, 102455, 347010, 983535, ...
		

Crossrefs

Rows n=0-4 give: A000012, A001477, A002378, A027444, A186636.
Main diagonal gives A124577.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; A[n_, k_] := b[n, n, k];  Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 03 2015, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{i>=1} 1/(1-k*x^i).
T(n,k) = Sum_{i=0..k} C(k,i) * A255970(n,i).

A261582 Expansion of Product_{k>=1} 1/(1 + 3*x^k).

Original entry on oeis.org

1, -3, 6, -21, 69, -201, 591, -1785, 5406, -16194, 48426, -145380, 436641, -1309611, 3927399, -11783280, 35354139, -106059387, 318165729, -954506190, 2863556475, -8590643832, 25771817454, -77315531169, 231946940175, -695840583126, 2087520715788, -6262562872614
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 25 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 + 3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^k*3^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x]
    (O[x]^30 + 4/QPochhammer[-3, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)

Formula

a(n) ~ c * (-3)^n, where c = Product_{j>=1} 1/(1-1/(-3)^j) = 1/QPochhammer[-1/3,-1/3] = 0.8212554466473167689981660621182786378...
G.f.: Sum_{i>=0} (-3)^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 13 2018

A292128 Expansion of Product_{k>=1} (1 - 3*x^k).

Original entry on oeis.org

1, -3, -3, 6, 6, 15, -12, -3, -30, -48, 6, -12, 15, 78, 186, -21, 168, 42, 42, -246, -408, -156, -399, -552, -498, -246, 213, 1248, -318, 1608, 1392, 2508, 1482, 2976, -480, -1011, 1500, -1704, -4296, -4206, -8499, -8652, -7626, -7050, -192, -13008, -480, -2118
Offset: 0

Views

Author

Seiichi Manyama, Sep 09 2017

Keywords

Crossrefs

Column k=3 of A292131.
Product_{k>=1} (1 - m*x^k): A010815 (m=1), A070877 (m=2), this sequence (m=3).

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1, N, 1-3*x^n))

Formula

G.f.: Sum_{i>=0} (-3)^i*x^(i*(i+1)/2)/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 13 2018

A261565 Expansion of Product_{k>=1} (1/(1 - 3*x^k))^k.

Original entry on oeis.org

1, 3, 15, 54, 201, 672, 2268, 7266, 23208, 72414, 224652, 688929, 2103975, 6386907, 19337091, 58367817, 175905741, 529331190, 1591515297, 4781575074, 14359673454, 43108645230, 129387584991, 388283978589, 1165099808574, 3495782937135, 10488322595625
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Comments

In general, for z > 1 or z < -1, if g.f. = Product_{k>=1} (1/(1 - z*x^k))^k, then a(n) ~ c * z^n, where c = Product_{j>=1} 1/(1 - 1/z^j)^(j+1).

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1/(1 - 3*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[3^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, 3^d * m^2/d^2) ) +x*O(x^n)), n)}
    for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

a(n) ~ c * 3^n, where c = Product_{j>=1} 1/(1 - 1/3^j)^(j+1) = 4.1269357592430271005054028580646705856298720432004233223482475759761040273...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} 3^d * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015

A265974 Expansion of Product_{k>=1} 1/(1 - 3*k*x^k).

Original entry on oeis.org

1, 3, 15, 54, 210, 699, 2484, 7995, 26610, 84186, 269940, 839238, 2634579, 8098194, 25032282, 76388265, 233791104, 709501596, 2157488730, 6523204836, 19747491810, 59558682132, 179762506329, 541222906812, 1630300772106, 4902697929306, 14748249476553
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 19 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1,
          3^n, b(n, i-1) +i*3*b(n-i, min(n-i, i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..32);  # Alois P. Heinz, Aug 23 2019
  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-3*k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^n, where c = Product_{m>=2} 1/(1 - m/3^(m-1)) = 5.86277744540963226378877460838259757442241952947887939654316926419876...

A303390 Expansion of Product_{k>=1} (1 + 3*x^k)/(1 - 3*x^k).

Original entry on oeis.org

1, 6, 24, 96, 330, 1104, 3552, 11184, 34584, 105990, 322224, 975264, 2942016, 8857680, 26631312, 80005632, 240219114, 721036320, 2163789816, 6492625152, 19480105392, 58444390176, 175340344416, 526034008752, 1578124753152, 4734415061142, 14203316252400
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 23 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[(1+3*x^k)/(1-3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^n, where c = QPochhammer[-1, 1/3] / QPochhammer[1/3] = 5.5877920355220979147599292926505407983327527...

A352762 Expansion of Product_{k>=1} 1 / (1 + 3^(k-1)*x^k).

Original entry on oeis.org

1, -1, -2, -7, -11, -43, -65, -259, -146, -1798, 826, -8116, 17593, -35089, 301903, -308464, 3582403, 157367, 28816009, 9388694, 329375419, -61352008, 2991009094, 509592773, 23675224255, 1207374806, 229200996508, -129896994130, 2090952547882, -816324790165, 14079091274800
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 08 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1 + 3^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[(-1)^k Length[IntegerPartitions[n, {k}]] 3^(n - k), {k, 0, n}], {n, 0, 30}]

Formula

a(n) = Sum_{k=0..n} (-1)^k * p(n,k) * 3^(n-k), where p(n,k) is the number of partitions of n into k parts.

A370710 a(n) = 3^n * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/3).

Original entry on oeis.org

1, 3, 27, 180, 1431, 10206, 83025, 641277, 5264109, 42896790, 357649587, 2989185039, 25284805857, 214547921451, 1832454271926, 15702526829196, 135091225972926, 1165383100947105, 10081310266960155, 87401262194470719, 759320707197024909, 6608561546767471227, 57610976508944343963
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]
    nmax = 25; CoefficientList[Series[Product[1/(1-3*(3*x)^k), {k, 1, nmax}]^(1/3), {x, 0, nmax}], x]
    nmax = 25; CoefficientList[Series[(-2/QPochhammer[3,x])^(1/3), {x, 0, nmax}], x] * 3^Range[0, nmax]

Formula

G.f.: Product_{k>=1} 1/(1 - 3*(3*x)^k)^(1/3).
a(n) ~ c * 9^n / n^(2/3), where c = 1 / (Gamma(1/3) * QPochhammer(1/3)^(1/3)) = 0.45283708537555770181385241925945547307046394744...

A370714 a(n) = 4^n * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/2).

Original entry on oeis.org

1, 6, 78, 780, 8790, 90708, 1015692, 10964760, 122893926, 1370476932, 15518261220, 176063641512, 2014426860540, 23109736996680, 266397931733208, 3079014279154224, 35695144493030022, 414708043501061988, 4828444403991450612, 56314242827277224712, 657855733949279381652
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 27 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x] * 4^Range[0, nmax]
    nmax = 25; CoefficientList[Series[Product[1/(1-3*(4*x)^k), {k, 1, nmax}]^(1/2), {x, 0, nmax}], x]
    nmax = 25; CoefficientList[Series[Sqrt[-2/QPochhammer[3,x]], {x, 0, nmax}], x] * 4^Range[0, nmax]

Formula

G.f.: Product_{k>=1} 1/(1 - 3*(4*x)^k)^(1/2).
a(n) ~ 12^n / sqrt(Pi*QPochhammer(1/3)*n).

A370735 a(n) = 5^(2*n) * [x^n] Product_{k>=1} 1/(1 - 3*x^k)^(1/5).

Original entry on oeis.org

1, 15, 1050, 52125, 3277500, 179801250, 11966690625, 738318187500, 49788716718750, 3314446448437500, 227432073022265625, 15631633385109375000, 1090877899335878906250, 76338563689129101562500, 5384934139819611328125000, 381204340327212964599609375, 27111589537137988341064453125
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 28 2024

Keywords

Comments

In general, if d > 1, m >= 1 and g.f. = Product_{k>=1} 1/(1 - d*x^k)^(1/m), then a(n) ~ d^n / (Gamma(1/m) * QPochhammer(1/d)^(1/m) * n^(1 - 1/m)).

Crossrefs

Cf. A242587 (d=3,m=1), A370714 (d=3,m=2), A370710 (d=3,m=3), A370734 (d=3,m=4).
Cf. A070933 (d=2,m=1), A370713 (d=2,m=2), A370715 (d=2,m=3), A370732 (d=2,m=4), A370733 (d=2,m=5).
Cf. A000041 (d=1,m=1), A271235 (d=1,m=2), A271236 (d=1,m=3).

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[1/(1-3*x^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x] * 25^Range[0, nmax]
    nmax = 20; CoefficientList[Series[Product[1/(1-3*(25*x)^k), {k, 1, nmax}]^(1/5), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - 3*(25*x)^k)^(1/5).
a(n) ~ 75^n / (Gamma(1/5) * QPochhammer(1/3)^(1/5) * n^(4/5)).
Showing 1-10 of 18 results. Next