cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A261582 Expansion of Product_{k>=1} 1/(1 + 3*x^k).

Original entry on oeis.org

1, -3, 6, -21, 69, -201, 591, -1785, 5406, -16194, 48426, -145380, 436641, -1309611, 3927399, -11783280, 35354139, -106059387, 318165729, -954506190, 2863556475, -8590643832, 25771817454, -77315531169, 231946940175, -695840583126, 2087520715788, -6262562872614
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 25 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 + 3*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^k*3^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x]
    (O[x]^30 + 4/QPochhammer[-3, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)

Formula

a(n) ~ c * (-3)^n, where c = Product_{j>=1} 1/(1-1/(-3)^j) = 1/QPochhammer[-1/3,-1/3] = 0.8212554466473167689981660621182786378...
G.f.: Sum_{i>=0} (-3)^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 13 2018

A261561 Expansion of Product_{k>=1} (1/(1 - 2*x^k))^k.

Original entry on oeis.org

1, 2, 8, 22, 64, 162, 424, 1022, 2480, 5770, 13336, 30046, 67184, 147554, 321592, 692278, 1479568, 3133474, 6596008, 13788606, 28679264, 59335530, 122256456, 250875550, 513116864, 1046190786, 2127557592, 4316282006, 8739096992, 17661731138, 35639764536
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;  `if`(n=0, 1, `if`(i<1, 0,
          add(2^j*binomial(i+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 21 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1/(1 - 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[Exp[Sum[2^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    {a(n) = polcoeff( exp( sum(m=1,n,x^m/m * sumdiv(m,d,2^d*m^2/d^2) ) +x*O(x^n)),n)}
    for(n=0,40,print1(a(n),", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

a(n) ~ c * 2^n, where c = Product_{j>=1} 1/(1 - 1/2^j)^(j+1) = 34.7387234654851595844514193757064296508992247003230539635669599773458896...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} 2^d * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015

A298985 a(n) = [x^n] Product_{k>=1} 1/(1 - n*x^k)^k.

Original entry on oeis.org

1, 1, 8, 54, 496, 5400, 73728, 1204322, 23167808, 512093178, 12781430600, 355128859129, 10863077554224, 362572265689777, 13107541496092960, 510105773344747725, 21258690342206888192, 944467894258279964254, 44555341678790400325512, 2224158766859058600584834, 117123916650423288611260400
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember;   `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(i+j-1, j)*b(n-i*j, i-1, k)*k^j, j=0..n/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 23 2018
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ n^n. - Vaclav Kotesovec, Feb 02 2018

A266857 Expansion of Product_{k>=1} (1 + 3*x^k)^k.

Original entry on oeis.org

1, 3, 6, 27, 48, 132, 324, 651, 1491, 3078, 6447, 12795, 25839, 50088, 96099, 184491, 343920, 640545, 1173609, 2138403, 3850584, 6882354, 12186336, 21423660, 37421757, 64816608, 111637392, 190976859, 324868530, 549265290, 923904711, 1545406077, 2572326510
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2016

Keywords

Comments

In general, for m > 0, if g.f. = Product_{k>=1} (1 + m*x^k)^k then a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (3^(2/3) * (m+1)^(1/12) * sqrt(2*Pi) * n^(2/3)), where c = Pi^2*log(m) + log(m)^3 - 6*polylog(3, -1/m).

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+3*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (2^(2/3) * 3^(2/3) * sqrt(Pi) * n^(2/3)), where c = Pi^2*log(3) + log(3)^3 - 6*polylog(3, -1/3) = 14.092743327504459346835224018840792668682349056875722467... .
Showing 1-4 of 4 results.