cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A261562 Expansion of Product_{k>=1} (1 + 2*x^k)^k.

Original entry on oeis.org

1, 2, 4, 14, 24, 58, 124, 238, 480, 922, 1764, 3238, 6008, 10794, 19292, 34166, 59504, 103042, 176452, 299958, 505240, 845570, 1403324, 2315118, 3794640, 6180370, 10009540, 16121374, 25829512, 41171690, 65320956, 103140062, 162149488, 253823178, 395698276
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;  `if`(n=0, 1, `if`(i<1, 0,
          add(2^j*binomial(i, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 21 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + 2*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*2^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
    nmax = 50; s = 1+2*x; Do[s*=Sum[Binomial[k, j]*2^j*x^(j*k), {j, 0, nmax/k}]; s = Take[Expand[s], Min[nmax + 1, Exponent[s, x] + 1]];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Jan 08 2016 *)
  • PARI
    {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, -(-2)^d * m^2/d^2) ) +x*O(x^n)), n)}
    for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} -(-2)^d * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015
a(n) ~ c^(1/6) * exp(3^(2/3)*c^(1/3)*n^(2/3)/2) / (3^(3/4)*sqrt(2*Pi)*n^(2/3)), where c = Pi^2*log(2) + log(2)^3 - 6*polylog(3, -1/2) = 10.00970018379942727227807189532511265744588249928680712064... . - Vaclav Kotesovec, Jan 04 2016

A261563 Expansion of Product_{k>=1} ((1 + 2*x^k)/(1 - 2*x^k))^k.

Original entry on oeis.org

1, 4, 16, 60, 192, 596, 1744, 4892, 13248, 34868, 89296, 223660, 548928, 1323060, 3137520, 7332332, 16907584, 38517444, 86777328, 193523404, 427562816, 936555044, 2035286576, 4390850268, 9409096576, 20037827876, 42429318480, 89369282460, 187325508288
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1 + 2*x^k)/(1 - 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[Exp[Sum[2^(2*k)/(2*k-1)*x^(2*k-1)/(1 - x^(2*k-1))^2, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, (2^d - (-2)^d) * m^2/d^2) ) +x*O(x^n)), n)}
    for(n=0,40,print1(a(n),", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

a(n) ~ c * 2^n, where c = 2 * Product_{j>=1} ((1 + 1/2^j)/(1 - 1/2^j))^(j+1) = 1021.5383556752320172813996404366861329314041364322798995039038143325883...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} (2^d - (-2)^d) * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015

A261565 Expansion of Product_{k>=1} (1/(1 - 3*x^k))^k.

Original entry on oeis.org

1, 3, 15, 54, 201, 672, 2268, 7266, 23208, 72414, 224652, 688929, 2103975, 6386907, 19337091, 58367817, 175905741, 529331190, 1591515297, 4781575074, 14359673454, 43108645230, 129387584991, 388283978589, 1165099808574, 3495782937135, 10488322595625
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Comments

In general, for z > 1 or z < -1, if g.f. = Product_{k>=1} (1/(1 - z*x^k))^k, then a(n) ~ c * z^n, where c = Product_{j>=1} 1/(1 - 1/z^j)^(j+1).

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1/(1 - 3*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[3^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, 3^d * m^2/d^2) ) +x*O(x^n)), n)}
    for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

a(n) ~ c * 3^n, where c = Product_{j>=1} 1/(1 - 1/3^j)^(j+1) = 4.1269357592430271005054028580646705856298720432004233223482475759761040273...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} 3^d * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015

A298985 a(n) = [x^n] Product_{k>=1} 1/(1 - n*x^k)^k.

Original entry on oeis.org

1, 1, 8, 54, 496, 5400, 73728, 1204322, 23167808, 512093178, 12781430600, 355128859129, 10863077554224, 362572265689777, 13107541496092960, 510105773344747725, 21258690342206888192, 944467894258279964254, 44555341678790400325512, 2224158766859058600584834, 117123916650423288611260400
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember;   `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(i+j-1, j)*b(n-i*j, i-1, k)*k^j, j=0..n/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 23 2018
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ n^n. - Vaclav Kotesovec, Feb 02 2018
Showing 1-4 of 4 results.