cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A026007 Expansion of Product_{m>=1} (1 + q^m)^m; number of partitions of n into distinct parts, where n different parts of size n are available.

Original entry on oeis.org

1, 1, 2, 5, 8, 16, 28, 49, 83, 142, 235, 385, 627, 1004, 1599, 2521, 3940, 6111, 9421, 14409, 21916, 33134, 49808, 74484, 110837, 164132, 241960, 355169, 519158, 755894, 1096411, 1584519, 2281926, 3275276, 4685731, 6682699, 9501979, 13471239, 19044780, 26850921, 37756561, 52955699
Offset: 0

Views

Author

Keywords

Comments

In general, for t > 0, if g.f. = Product_{m>=1} (1 + t*q^m)^m then a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (3^(2/3) * (t+1)^(1/12) * sqrt(2*Pi) * n^(2/3)), where c = Pi^2*log(t) + log(t)^3 - 6*polylog(3, -1/t). - Vaclav Kotesovec, Jan 04 2016

Examples

			For n = 4, we have 8 partitions
  01: [4]
  02: [4']
  03: [4'']
  04: [4''']
  05: [3, 1]
  06: [3', 1]
  07: [3'', 1]
  08: [2, 2']
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember;
          add((-1)^(n/d+1)*d^2, d=divisors(n))
        end:
    a:= proc(n) option remember;
          `if`(n=0, 1, add(b(k)*a(n-k), k=1..n)/n)
        end:
    seq(a(n), n=0..45);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[n_] := a[n] = 1/n*Sum[Sum[(-1)^(k/d+1)*d^2, {d, Divisors[k]}]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 41}] (* Jean-François Alcover, Apr 17 2014, after Vladeta Jovovic *)
    nmax=50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *)
  • PARI
    N=66; q='q+O('q^N);
    gf= prod(n=1,N, (1+q^n)^n );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */

Formula

a(n) = (1/n)*Sum_{k=1..n} A078306(k)*a(n-k). - Vladeta Jovovic, Nov 22 2002
G.f.: Product_{m>=1} (1+x^m)^m. Weighout transform of natural numbers (A000027). Euler transform of A026741. - Franklin T. Adams-Watters, Mar 16 2006
a(n) ~ zeta(3)^(1/6) * exp((3/2)^(4/3) * zeta(3)^(1/3) * n^(2/3)) / (2^(3/4) * 3^(1/3) * sqrt(Pi) * n^(2/3)), where zeta(3) = A002117. - Vaclav Kotesovec, Mar 05 2015

A032302 G.f.: Product_{k>=1} (1 + 2*x^k).

Original entry on oeis.org

1, 2, 2, 6, 6, 10, 18, 22, 30, 42, 66, 78, 110, 138, 186, 254, 318, 402, 522, 654, 822, 1074, 1306, 1638, 2022, 2514, 3058, 3798, 4662, 5658, 6882, 8358, 10062, 12186, 14610, 17534, 21150, 25146, 29994, 35694, 42446, 50178, 59514, 70110, 82758, 97602, 114570, 134262
Offset: 0

Views

Author

Christian G. Bower, Apr 01 1998

Keywords

Comments

"EFK" (unordered, size, unlabeled) transform of 2,2,2,2,...
Number of partitions into distinct parts of 2 sorts, see example. - Joerg Arndt, May 22 2013
In general, for a fixed integer m > 0, if g.f. = Product_{k>=1} (1 + m*x^k) then a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt((m+1)*Pi)*n^(3/4)), where c = Pi^2/6 + log(m)^2/2 + polylog(2, -1/m) = -polylog(2, -m). - Vaclav Kotesovec, Jan 04 2016
Antidiagonal sums of A284593. - Peter Bala, Mar 30 2017

Examples

			From _Joerg Arndt_, May 22 2013: (Start)
There are a(7) = 22 partitions of 7 into distinct parts of 2 sorts (format P:S for part:sort):
01:  [ 1:0  2:0  4:0  ]
02:  [ 1:0  2:0  4:1  ]
03:  [ 1:0  2:1  4:0  ]
04:  [ 1:0  2:1  4:1  ]
05:  [ 1:0  6:0  ]
06:  [ 1:0  6:1  ]
07:  [ 1:1  2:0  4:0  ]
08:  [ 1:1  2:0  4:1  ]
09:  [ 1:1  2:1  4:0  ]
10:  [ 1:1  2:1  4:1  ]
11:  [ 1:1  6:0  ]
12:  [ 1:1  6:1  ]
13:  [ 2:0  5:0  ]
14:  [ 2:0  5:1  ]
15:  [ 2:1  5:0  ]
16:  [ 2:1  5:1  ]
17:  [ 3:0  4:0  ]
18:  [ 3:0  4:1  ]
19:  [ 3:1  4:0  ]
20:  [ 3:1  4:1  ]
21:  [ 7:0  ]
22:  [ 7:1  ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, 2*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015
    # Alternatively:
    simplify(expand(QDifferenceEquations:-QPochhammer(-2,x,99)/3,x)):
    seq(coeff(%,x,n), n=0..47); # Peter Luschny, Nov 17 2016
  • Mathematica
    nn=47; CoefficientList[Series[Product[1+2x^i,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 07 2013 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*2^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    (QPochhammer[-2, x]/3 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1,N, 1+2*x^n)) \\ Joerg Arndt, May 22 2013

Formula

a(n) = A072706(n)*2 for n>=1.
G.f.: Sum_{n>=0} (2^n*q^(n*(n+1)/2) / Product_{k=1..n} (1-q^k ) ). - Joerg Arndt, Jan 20 2014
a(n) = (1/3) [x^n] QPochhammer(-2,x). - Vladimir Reshetnikov, Nov 20 2015
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Pi^2/6 + log(2)^2/2 + polylog(2, -1/2) = 1.43674636688368094636290202389358335424... . Equivalently, c = A266576 = Pi^2/12 + log(2)^2 + polylog(2, 1/4)/2. - Vaclav Kotesovec, Jan 04 2016

A266891 Expansion of Product_{k>=1} (1 + k*x^k)^k.

Original entry on oeis.org

1, 1, 4, 13, 29, 81, 188, 456, 1030, 2405, 5295, 11611, 25246, 53552, 113332, 235685, 486011, 990840, 2006567, 4018010, 7992003, 15768511, 30875424, 60060509, 116042548, 222817961, 425200270, 806991037, 1522748592, 2858792520, 5339457208, 9924370365
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 05 2016

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = -n, g(n) = -n. - Seiichi Manyama, Nov 18 2017

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    (* More efficient program: *) nmax = 50; s = 1+x; Do[s*=Sum[Binomial[k, j] * k^j * x^(j*k), {j, 0, nmax/k}]; s = Take[Expand[s], Min[nmax + 1, Exponent[s, x] + 1]];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Jan 07 2016 *)

Formula

a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d*(-d)^(1+n/d). - Seiichi Manyama, Nov 18 2017
Conjecture: log(a(n)) ~ n^(2/3) * (2*log(3*n) - 3) / (4*3^(1/3)). - Vaclav Kotesovec, May 08 2018

A071109 Expansion of Product_{k>=1} 1/(1+2*x^k).

Original entry on oeis.org

1, -2, 2, -6, 14, -26, 50, -102, 214, -426, 834, -1678, 3398, -6778, 13482, -27022, 54198, -108306, 216346, -432878, 866334, -1732386, 3463626, -6927926, 13858350, -27715378, 55426002, -110855030, 221719582, -443433610, 886848930, -1773709078, 3547455846
Offset: 0

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 27 2002

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 + 2*x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^k*2^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    (O[x]^30 + 3/QPochhammer[-2, x])[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)

Formula

a(n) ~ c * (-2)^n, where c = Product_{j>=1} 1/(1-1/(-2)^j) = 1/QPochhammer[-1/2,-1/2] = 0.8259519860658427384636116224100201356301... . - Vaclav Kotesovec, Aug 25 2015
G.f.: Sum_{i>=0} (-2)^i*x^i/Product_{j=1..i} (1 - x^j). - Ilya Gutkovskiy, Apr 13 2018

Extensions

More terms from Vaclav Kotesovec, Aug 25 2015

A261561 Expansion of Product_{k>=1} (1/(1 - 2*x^k))^k.

Original entry on oeis.org

1, 2, 8, 22, 64, 162, 424, 1022, 2480, 5770, 13336, 30046, 67184, 147554, 321592, 692278, 1479568, 3133474, 6596008, 13788606, 28679264, 59335530, 122256456, 250875550, 513116864, 1046190786, 2127557592, 4316282006, 8739096992, 17661731138, 35639764536
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;  `if`(n=0, 1, `if`(i<1, 0,
          add(2^j*binomial(i+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 21 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1/(1 - 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[Exp[Sum[2^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    {a(n) = polcoeff( exp( sum(m=1,n,x^m/m * sumdiv(m,d,2^d*m^2/d^2) ) +x*O(x^n)),n)}
    for(n=0,40,print1(a(n),", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

a(n) ~ c * 2^n, where c = Product_{j>=1} 1/(1 - 1/2^j)^(j+1) = 34.7387234654851595844514193757064296508992247003230539635669599773458896...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} 2^d * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015

A261563 Expansion of Product_{k>=1} ((1 + 2*x^k)/(1 - 2*x^k))^k.

Original entry on oeis.org

1, 4, 16, 60, 192, 596, 1744, 4892, 13248, 34868, 89296, 223660, 548928, 1323060, 3137520, 7332332, 16907584, 38517444, 86777328, 193523404, 427562816, 936555044, 2035286576, 4390850268, 9409096576, 20037827876, 42429318480, 89369282460, 187325508288
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1 + 2*x^k)/(1 - 2*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[Exp[Sum[2^(2*k)/(2*k-1)*x^(2*k-1)/(1 - x^(2*k-1))^2, {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, (2^d - (-2)^d) * m^2/d^2) ) +x*O(x^n)), n)}
    for(n=0,40,print1(a(n),", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

a(n) ~ c * 2^n, where c = 2 * Product_{j>=1} ((1 + 1/2^j)/(1 - 1/2^j))^(j+1) = 1021.5383556752320172813996404366861329314041364322798995039038143325883...
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} (2^d - (-2)^d) * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015

A298987 a(n) = [x^n] Product_{k>=1} (1 + n*x^k)^k.

Original entry on oeis.org

1, 1, 4, 27, 80, 400, 1908, 6223, 31296, 116478, 450100, 1828915, 7360848, 26906828, 95776772, 403908975, 1421758720, 5072014447, 18481180644, 68350964211, 246180936400, 827642046294, 2958748580084, 10294629775620, 36607347335232, 120800714172500, 407951731319860, 1405943613730899
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 27}]

A266857 Expansion of Product_{k>=1} (1 + 3*x^k)^k.

Original entry on oeis.org

1, 3, 6, 27, 48, 132, 324, 651, 1491, 3078, 6447, 12795, 25839, 50088, 96099, 184491, 343920, 640545, 1173609, 2138403, 3850584, 6882354, 12186336, 21423660, 37421757, 64816608, 111637392, 190976859, 324868530, 549265290, 923904711, 1545406077, 2572326510
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2016

Keywords

Comments

In general, for m > 0, if g.f. = Product_{k>=1} (1 + m*x^k)^k then a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (3^(2/3) * (m+1)^(1/12) * sqrt(2*Pi) * n^(2/3)), where c = Pi^2*log(m) + log(m)^3 - 6*polylog(3, -1/m).

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+3*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/6) * exp(3^(2/3) * c^(1/3) * n^(2/3) / 2) / (2^(2/3) * 3^(2/3) * sqrt(Pi) * n^(2/3)), where c = Pi^2*log(3) + log(3)^3 - 6*polylog(3, -1/3) = 14.092743327504459346835224018840792668682349056875722467... .
Showing 1-8 of 8 results.