cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A304210 Indices of primes in A266891.

Original entry on oeis.org

3, 4, 25, 36, 54, 116, 122, 303, 559, 649, 720, 1294, 1359, 1757, 2727, 2938, 3618, 3661, 4217, 10143, 12204, 13382, 14136, 15398, 23661, 25880, 32345, 37859, 44955, 50119, 51712, 59989, 64645, 65715, 72135, 72250, 73702, 74939, 103364, 109425, 128847, 146987, 158189, 189186, 195836
Offset: 1

Views

Author

Vaclav Kotesovec, May 08 2018

Keywords

Comments

No other terms below 200000.

Examples

			25 is in the sequence because A266891(25) = 222817961 is prime.
		

Crossrefs

A304211 Numbers k such that A266891(k) is divisible by k.

Original entry on oeis.org

1, 2, 252, 481, 497, 585, 619, 19141, 49508, 119096, 125897, 155036, 171507
Offset: 1

Views

Author

Vaclav Kotesovec, May 08 2018

Keywords

Comments

No other terms below 200000.

Examples

			252 is in the sequence because A266891(252) = 31553893207174225739699170241560483640785962613789452 = 125213861933231054522615754926827316034864931007101 * 252.
		

Crossrefs

A266964 Expansion of Product_{k>=1} (1 - k*x^k)^k.

Original entry on oeis.org

1, -1, -4, -5, -3, 23, 44, 104, 70, -93, -465, -1155, -1882, -1904, 804, 6195, 18755, 33296, 47327, 35198, -28493, -176199, -453792, -805453, -1126396, -1028297, -18994, 2946491, 8248080, 16444480, 25436984, 30736635, 22263981, -16098311, -102681575
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 07 2016

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1-k*q^k)^k: k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    seq(coeff(series(mul((1-k*x^k)^k,k=1..n),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1-k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    (* More efficient program: *) nmax = 40; s = 1-x; Do[s*=Sum[Binomial[k, j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax]
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k*x^k)^k)) \\ Seiichi Manyama, Nov 18 2017
    
  • Ruby
    def s(f_ary, g_ary, n)
      s = 0
      (1..n).each{|i| s += i * f_ary[i] * g_ary[i] ** (n / i) if n % i == 0}
      s
    end
    def A(f_ary, g_ary, n)
      ary = [1]
      a = [0] + (1..n).map{|i| s(f_ary, g_ary, i)}
      (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
      ary
    end
    def A266964(n)
      A((0..n).map{|i| -i}, (0..n).to_a, n)
    end
    p A266964(50) # Seiichi Manyama, Nov 18 2017
    

Formula

a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} (Sum_{d|k} d^(2+k/d)) * a(n-k) for n > 0. - Seiichi Manyama, Nov 02 2017
From Seiichi Manyama, Nov 14 2017: (Start)
A generalized Euler transform.
Suppose given two sequences f(n) and g(n), n>0, we define a new sequence a(n), n>=0, by Product_{n>0} (1 - g(n)*x^n)^(-f(n)) = a(0) + a(1)*x + a(2)*x^2 + ...
Since Product_{n>0} (1 - g(n)*x^n)^(-f(n)) = exp(Sum_{n>0} (Sum_{d|n} d*f(d)*g(d)^(n/d))*x^n/n), we see that a(n) is given explicitly by a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d*f(d)*g(d)^(n/d).
Examples:
1. If we set g(n) = 1, we get the usual Euler transform.
2. If we set f(n) = -h(n) and g(n) = -1, we get the weighout transform (cf. A026007).
3. If we set f(n) = -n and g(n) = n, we get this sequence.
(End)

A022629 Expansion of Product_{m>=1} (1 + m*q^m).

Original entry on oeis.org

1, 1, 2, 5, 7, 15, 25, 43, 64, 120, 186, 288, 463, 695, 1105, 1728, 2525, 3741, 5775, 8244, 12447, 18302, 26424, 37827, 54729, 78330, 111184, 159538, 225624, 315415, 444708, 618666, 858165, 1199701, 1646076, 2288961, 3150951, 4303995, 5870539, 8032571, 10881794, 14749051, 19992626
Offset: 0

Views

Author

Keywords

Comments

Sum of products of terms in all partitions of n into distinct parts. - Vladeta Jovovic, Jan 19 2002
Number of partitions of n into distinct parts, when there are j sorts of part j. a(4) = 7: 4, 4', 4'', 4''', 31, 3'1, 3''1. - Alois P. Heinz, Aug 24 2015

Examples

			The partitions of 6 into distinct parts are 6, 1+5, 2+4, 1+2+3, the corresponding products are 6,5,8,6 and their sum is a(6) = 25.
		

Crossrefs

Programs

  • Magma
    Coefficients(&*[(1+m*x^m):m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 16 2018
  • Maple
    b:= proc(n, i) option remember; local f, g;
          if n=0 then [1, 1] elif i<1 then [0, 0]
        else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i-1));
             [f[1]+g[1], f[2]+g[2]*i]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..60);  # Alois P. Heinz, Nov 02 2012
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, i*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015
  • Mathematica
    nn=20;CoefficientList[Series[Product[1+i x^i,{i,1,nn}],{x,0,nn}],x]  (* Geoffrey Critzer, Nov 02 2012 *)
    nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^(j+1)*PolyLog[-j, x^j]/j, {j, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 28 2015 *)
    (* More efficient program: 10000 terms, 4 minutes, 100000 terms, 6 hours *) nmax = 40; poly = ConstantArray[0, nmax+1]; poly[[1]] = 1; poly[[2]] = 1; Do[Do[poly[[j+1]] += k*poly[[j-k+1]], {j, nmax, k, -1}];, {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 06 2016 *)
  • PARI
    N=66; q='q+O('q^N); Vec(prod(n=1,N, (1+n*q^n) )) \\ Joerg Arndt, Oct 06 2012
    

Formula

Conjecture: log(a(n)) ~ sqrt(n/2) * (log(2*n) - 2). - Vaclav Kotesovec, May 08 2018

A297321 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 + j*x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 5, 0, 1, 4, 9, 14, 7, 0, 1, 5, 14, 28, 28, 15, 0, 1, 6, 20, 48, 69, 64, 25, 0, 1, 7, 27, 75, 137, 174, 133, 43, 0, 1, 8, 35, 110, 240, 380, 413, 266, 64, 0, 1, 9, 44, 154, 387, 726, 998, 933, 513, 120, 0, 1, 10, 54, 208, 588, 1266, 2075, 2488, 2046, 1000, 186, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 3)*x^2 + (1/6)*k*(k^2 + 9*k + 20)*x^3 + (1/24)*k*(k^3 + 18*k^2 + 107*k + 42)*x^4 + (1/120)*k*(k^4 + 30*k^3 + 335*k^2 + 810*k + 624)*x^5 + ...
Square array begins:
1,   1,   1,    1,    1,    1,  ...
0,   1,   2,    3,    4,    5,  ...
0,   2,   5,    9,   14,   20,  ...
0,   5,  14,   28,   48,   75,  ...
0,   7,  28,   69,  137,  240,  ...
0,  15,  64,  174,  380,  726,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 + i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 + j*x^j)^k.

A266941 Expansion of Product_{k>=1} 1 / (1 - k*x^k)^k.

Original entry on oeis.org

1, 1, 5, 14, 42, 103, 289, 690, 1771, 4206, 10142, 23449, 54786, 123528, 279480, 619206, 1366405, 2969071, 6425534, 13727775, 29187555, 61439660, 128620370, 267044222, 551527679, 1130806020, 2306746335, 4676096006, 9432394144, 18920266428, 37776372312
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2016

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = n. - Seiichi Manyama, Nov 18 2017

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; s = 1 - x; Do[s *= Sum[Binomial[k, j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

From Vaclav Kotesovec, Jan 08 2016: (Start)
a(n) ~ c * n^2 * 3^(n/3), where
c = 3278974684037157122864203.021982619109776972432419491714093... if mod(n,3)=0
c = 3278974684037157122864202.999526122508793149896683112820555... if mod(n,3)=1
c = 3278974684037157122864203.001231135511323719311281438384212... if mod(n,3)=2
(End)
In closed form, a(n) ~ (Product_{k>=4}((1 - k/3^(k/3))^(-k)) / ((1 - 2/3^(2/3))^2 * (1 - 1/3^(1/3))) + Product_{k>=4}((1 - (-1)^(2*k/3)*k/3^(k/3))^(-k)) / ((-1)^(2*n/3) * ((1 + 2*(-1)^(1/3)/3^(2/3))^2 * (1 - (-1)^(2/3)/3^(1/3)))) + Product_{k>=4}((1 - (-1)^(4*k/3)*k/3^(k/3))^(-k)) / ((-1)^(4*n/3) * ((1 + (-1/3)^(1/3)) * (1 - 2*(-1/3)^(2/3))^2))) * 3^(n/3) * n^2 / 54. - Vaclav Kotesovec, Apr 24 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} (Sum_{d|k} d^(2+k/d)) * a(n-k) for n > 0. - Seiichi Manyama, Nov 02 2017

A261562 Expansion of Product_{k>=1} (1 + 2*x^k)^k.

Original entry on oeis.org

1, 2, 4, 14, 24, 58, 124, 238, 480, 922, 1764, 3238, 6008, 10794, 19292, 34166, 59504, 103042, 176452, 299958, 505240, 845570, 1403324, 2315118, 3794640, 6180370, 10009540, 16121374, 25829512, 41171690, 65320956, 103140062, 162149488, 253823178, 395698276
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 24 2015

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;  `if`(n=0, 1, `if`(i<1, 0,
          add(2^j*binomial(i, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);  # Alois P. Heinz, Sep 21 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + 2*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*2^k/k*x^k/(1 - x^k)^2, {k, 1, nmax}]], {x, 0, nmax}], x]
    nmax = 50; s = 1+2*x; Do[s*=Sum[Binomial[k, j]*2^j*x^(j*k), {j, 0, nmax/k}]; s = Take[Expand[s], Min[nmax + 1, Exponent[s, x] + 1]];, {k, 2, nmax}]; CoefficientList[s, x] (* Vaclav Kotesovec, Jan 08 2016 *)
  • PARI
    {a(n) = polcoeff( exp( sum(m=1, n, x^m/m * sumdiv(m, d, -(-2)^d * m^2/d^2) ) +x*O(x^n)), n)}
    for(n=0, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Sep 30 2015

Formula

G.f.: exp( Sum_{n>=1} x^n/n * Sum_{d|n} -(-2)^d * n^2/d^2 ). - Paul D. Hanna, Sep 30 2015
a(n) ~ c^(1/6) * exp(3^(2/3)*c^(1/3)*n^(2/3)/2) / (3^(3/4)*sqrt(2*Pi)*n^(2/3)), where c = Pi^2*log(2) + log(2)^3 - 6*polylog(3, -1/2) = 10.00970018379942727227807189532511265744588249928680712064... . - Vaclav Kotesovec, Jan 04 2016

A266971 Expansion of Product_{k>=1} 1 / (1 + k*x^k)^k.

Original entry on oeis.org

1, -1, -3, -6, 2, 9, 41, 46, 91, -110, -210, -713, -574, -1152, 792, 1066, 9317, 8553, 21302, 745, 8051, -82940, -76750, -276022, -82369, -404100, 381095, -38110, 2427272, 1126260, 6527840, 198507, 9754305, -14320206, 2879362, -60271740, -5154261, -143468194
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 07 2016

Keywords

Comments

For n > 36 is a(n) > 0 if n is even and a(n) < 0 if n is odd.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = -n. - Seiichi Manyama, Nov 18 2017

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1+k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+k*x^k)^k)) \\ Seiichi Manyama, Nov 18 2017
    
  • Ruby
    def s(f_ary, g_ary, n)
      s = 0
      (1..n).each{|i| s += i * f_ary[i] * g_ary[i] ** (n / i) if n % i == 0}
      s
    end
    def A(f_ary, g_ary, n)
      ary = [1]
      a = [0] + (1..n).map{|i| s(f_ary, g_ary, i)}
      (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
      ary
    end
    def A266971(n)
      A((0..n).to_a, (0..n).map{|i| -i}, n)
    end
    p A266971(50) # Seiichi Manyama, Nov 18 2017

Formula

a(n) ~ c * (-1)^n * n^2 * 3^(n/3), where
c = 50.5838262902886367070621... if mod(n,3)=0,
c = 50.5827771239052189170531... if mod(n,3)=1,
c = 50.5832885870455104598393... if mod(n,3)=2.
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(-d)^(n/d). - Seiichi Manyama, Nov 18 2017

A281790 Expansion of Product_{k>=1} (1+x^(k^2))^k.

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 0, 0, 1, 4, 3, 0, 0, 6, 6, 0, 4, 7, 6, 3, 8, 8, 6, 6, 4, 21, 20, 4, 1, 34, 34, 2, 8, 23, 44, 28, 19, 18, 54, 54, 18, 56, 65, 46, 25, 100, 94, 38, 42, 85, 169, 107, 56, 69, 226, 194, 62, 111, 194, 241, 125, 215, 246, 258, 207, 283, 437, 292
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 14 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+x^(k^2))^k, {k,1,nmax}], {x,0,nmax}], x]
    nmax = 100; s = 1 + x; Do[s*=Sum[Binomial[k, j]*x^(j*k^2), {j, 0, Floor[nmax/k^2] + 1}]; s = Select[Expand[s], Exponent[#, x] <= nmax &];, {k, 2, nmax}]; CoefficientList[s, x]

Formula

a(n) ~ exp(sqrt(n/6)*Pi) / (2^(11/6) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 15 2017

A298987 a(n) = [x^n] Product_{k>=1} (1 + n*x^k)^k.

Original entry on oeis.org

1, 1, 4, 27, 80, 400, 1908, 6223, 31296, 116478, 450100, 1828915, 7360848, 26906828, 95776772, 403908975, 1421758720, 5072014447, 18481180644, 68350964211, 246180936400, 827642046294, 2958748580084, 10294629775620, 36607347335232, 120800714172500, 407951731319860, 1405943613730899
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 27}]
Showing 1-10 of 17 results. Next