cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242805 Integers n such that each of n, n + 1, n + 2, n + 4, n + 5, n + 6 is the squarefree product of three primes.

Original entry on oeis.org

73293, 120237, 122613, 130429, 143493, 147953, 171893, 180965, 199833, 213153, 219201, 268017, 287493, 298433, 299553, 300093, 313701, 329793, 332889, 341781, 363597, 369393, 376201, 392509, 404453, 432393, 460801, 475809, 493597, 503457, 506517, 508677
Offset: 1

Views

Author

Keywords

Comments

It is remarkable that this sequence starts with considerably bigger density than the analog A242804 for squarefree integers with two prime divisors. The exceptional density causes the problem that overlapping sextets appear very soon and rather frequently, whereas in A242804 the phenomenon of overlapping sextets does not occur up to the bound 9*10^9.
In fact, there exist 114 nonets n, n + 1, n + 2, n + 4, n + 5, n + 6, n + 8, n + 9, n + 10 of squarefree integers with exactly three prime divisors, up to 10^8. The PARI script in PROG does not start a new sextet before the previous sextet was completed. The impact on bigger clusters, such as nonets and dodekuplets, is illustrated in the CAVEAT of section EXAMPLE.

Examples

			73293 = 3*11*2221, 73294 = 2*13*2819, 73295 = 5*107*137,
73297 = 7*37*283,  73298 = 2*67*547,  73299 = 3*53*461.
CAVEAT:
(1) For the dodekuplet, which starts together with the first nonet,
969833 = 17*89*641,  969834 = 2*3*161639, 969835 = 5*31*6257,
969837 = 3*11*29389, 969838 = 2*173*2803, 969839 = 13*61*1223,
969841 = 23*149*283, 969842 = 2*59*8219,  969843 = 3*7*46183,
969845 = 5*47*4127,  969846 = 2*3*161641, 969847 = 29*53*631.
Not all PARI scripts list 969833 and 969841, but not 969837.
(2) For the second nonet,
1450257 = 3*229*2111, 1450258 = 2*179*4051, 1450259 = 83*101*173,
1450261 = 29*43*1163, 1450262 = 2*11*65921, 1450263 = 3*191*2531,
1450265 = 5*23*12611, 1450266 = 2*3*241711, 1450267 = 7*13*15937,
the PARI script lists 1450257 only, but not 1450261.
		

Crossrefs

Cf. A242793 and A242804 (two primes), A242806 (four primes), A242829 (five primes).

Programs

  • Mathematica
    s = {}; Do[If[AllTrue[{k, k + 1, k + 2, k + 4, k + 5, k + 6}, SquareFreeQ] && {3, 3, 3, 3, 3, 3} == PrimeOmega[{k, k + 1, k + 2, k + 4, k + 5, k + 6}], AppendTo[s, k]], {k, 73293, 2000000, 4}]; s (* Zak Seidov, Nov 12 2018 *)
  • PARI
    { default(primelimit, 1000M); i=0; j=0; k=0; l=0; m=0; loc=0; lb=2; ub=9*10^9; o=3; for(n=lb, ub, if(issquarefree(n)&&(o==omega(n)), loc=loc+1; if(1==loc, i=n; ); if(2==loc, if(i+1==n, j=n; ); if(i+1
    				
  • PARI
    is(n) = {my(f=factor(n)); matsize(f)==[3, 2] && vecmax(f[ , 2])==1};
    isok(v) = vecextract(v, "^4")==[1, 1, 1, 1, 1, 1]; v = vector(7); for(k=8, 550000, v=concat(vecextract(v, "^1"), is(k+6)); if(isok(v), print1(k, ", "))) \\ Amiram Eldar, Nov 13 2018
    
  • PARI
    upto(n) = {my(res = List(), streak = 1); for(i = 31, n+6, if(factor(i)[, 2] == [1, 1, 1]~, streak++; if(streak % 4 == 3 && streak >= 7, listput(res, i-6)), if(streak % 4 == 3, streak++, streak = 0))); res} \\ David A. Corneth, Nov 13 2018