cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242910 Decimal expansion of exp(sqrt(Pi/24)).

Original entry on oeis.org

1, 4, 3, 5, 9, 1, 2, 6, 3, 1, 6, 1, 1, 7, 7, 3, 1, 2, 4, 7, 7, 2, 2, 4, 7, 2, 4, 0, 2, 8, 9, 9, 6, 5, 4, 5, 0, 5, 9, 0, 9, 4, 3, 5, 6, 3, 2, 5, 6, 1, 1, 3, 1, 4, 6, 6, 8, 0, 0, 5, 8, 1, 9, 4, 7, 3, 5, 0, 3, 2, 5, 4, 8, 0, 4, 2, 8, 4, 7, 9, 0, 6, 1, 6, 2, 1, 3, 1, 8, 5, 4, 5, 7, 8, 0, 1, 7, 5, 8, 7
Offset: 1

Views

Author

Jean-François Alcover, May 26 2014

Keywords

Examples

			1.43591263161177312477224724028996545059...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 3.10 Kneser-Mahler polynomial constants p. 234.

Crossrefs

Programs

  • Maple
    Digits:=100: evalf(exp(sqrt(Pi/24))); # Wesley Ivan Hurt, Jan 09 2017
  • Mathematica
    RealDigits[Exp[Sqrt[Pi/24]], 10, 100] // First
  • PARI
    exp(sqrt(Pi/24)) \\ G. C. Greubel, Jan 09 2017

Formula

Lim_(m->infinity) M(z_1 + (1 + z_2)*(1 + z_3)*...*(1 + z_m))^(1/sqrt(m)), where M is Mahler's measure for multivariate polynomials.

A242908 Decimal expansion of exp(7*zeta(3)/(2*Pi^2)).

Original entry on oeis.org

1, 5, 3, 1, 5, 4, 7, 0, 9, 6, 6, 8, 7, 4, 5, 7, 7, 7, 6, 6, 4, 0, 7, 7, 7, 8, 6, 5, 1, 3, 5, 8, 0, 2, 0, 6, 0, 2, 0, 1, 7, 8, 3, 3, 7, 6, 9, 0, 3, 6, 4, 8, 9, 9, 8, 8, 4, 5, 6, 2, 7, 8, 7, 1, 4, 2, 8, 8, 5, 1, 7, 5, 2, 7, 6, 9, 8, 6, 5, 6, 2, 0, 7, 8, 3, 8, 0, 2, 3, 7, 7, 6, 3, 8, 6, 3, 8, 5, 4, 1
Offset: 1

Views

Author

Jean-François Alcover, May 26 2014

Keywords

Examples

			1.5315470966874577766407778651358020602...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 3.10 Kneser-Mahler polynomial constants, p. 234.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[7*Zeta[3]/(2*Pi^2)], 10, 100] // First

Formula

M(1 + x + y + z) where M is Mahler's measure for multivariate polynomials.
Equals sqrt(2) * Product_{k>=1} (1 + 1/(4*k^2 - 1))^(4*k^2) * (1 - 2/(2*k + 1))^k. - Antonio Graciá Llorente, Sep 02 2024

A244238 Decimal expansion of K = exp(8*G/(3*Pi)), a Kneser-Mahler constant related to an asymptotic inequality involving Bombieri's supremum norm, where G is Catalan's constant. K can be evaluated as Mahler's generalized height measure of the bivariate polynomial (1+x+x^2+y)^2.

Original entry on oeis.org

2, 1, 7, 6, 0, 1, 6, 1, 3, 5, 2, 9, 2, 3, 7, 0, 4, 2, 6, 2, 3, 5, 1, 6, 0, 7, 6, 5, 7, 3, 2, 3, 2, 7, 3, 7, 1, 6, 7, 7, 3, 2, 6, 6, 1, 3, 7, 1, 5, 4, 2, 2, 2, 5, 5, 1, 6, 3, 7, 8, 9, 8, 2, 3, 2, 2, 0, 2, 2, 9, 6, 8, 2, 8, 7, 0, 1, 8, 0, 2, 6, 0, 0, 7, 6, 6, 8, 5, 5, 0, 9, 2, 8, 5, 3, 4, 2, 5, 3, 1, 1, 9
Offset: 1

Views

Author

Jean-François Alcover, Jun 23 2014

Keywords

Examples

			2.17601613529237042623516...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.10 Kneser-Mahler polynomial constants, p. 234.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Exp(8*Catalan(R)/(3*Pi(R))); // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[Exp[8*Catalan/(3*Pi)], 10, 102] // First
  • PARI
    default(realprecision, 100); exp(8*Catalan/(3*Pi)) \\ G. C. Greubel, Aug 25 2018
    
Showing 1-3 of 3 results.