cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243131 a(n) = 16*n^5 - 20*n^3 + 5*n.

Original entry on oeis.org

0, 1, 362, 3363, 15124, 47525, 120126, 262087, 514088, 930249, 1580050, 2550251, 3946812, 5896813, 8550374, 12082575, 16695376, 22619537, 30116538, 39480499, 51040100, 65160501, 82245262, 102738263, 127125624, 155937625, 189750626, 229188987
Offset: 0

Views

Author

Vincenzo Librandi, May 31 2014

Keywords

Comments

Chebyshev polynomial of the first kind T(5,n).

Crossrefs

Programs

  • Magma
    [16*n^5-20*n^3+5*n: n in [0..40]];
    
  • Maple
    a:= n-> simplify(ChebyshevT(5, n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 31 2014
  • Mathematica
    Table[ChebyshevT[5, n], {n, 0, 40}] (* or *) Table[16*n^5 - 20*n^3 + 5*n, {n, 0, 20}]
    LinearRecurrence[{6,-15,20,-15,6,-1},{0,1,362,3363,15124,47525},30] (* Harvey P. Dale, Aug 03 2023 *)
  • PARI
    apply(x->polchebyshev(5,1,x), vector(30,i,i-1)) \\ Hugo Pfoertner, Oct 18 2022

Formula

a(n) = n*(16*n^4-20*n^2+5) = (-1/4)*n *(-8*n^2+5+sqrt(5))*(8*n^2-5+sqrt(5)).
G.f.: x*(1 + 356*x + 1206*x^2 + 356*x^3 + x^4)/(1 - x)^6.