cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A243362 Numbers n such that A243361(n) = 123456789.

Original entry on oeis.org

54023, 54203, 500407, 23456789, 23458679, 23459687, 23465789, 23465987, 23469587, 23475869, 23478569, 23489657, 23495867, 23496587, 23498567, 23546879, 23546987, 23548697, 23564897, 23564987, 23567849, 23569487, 23576489, 23584679, 23587649, 23589647, 23594687
Offset: 1

Views

Author

Jaroslav Krizek, Jun 04 2014

Keywords

Comments

Supersequence of A243363, A243364 and A160402.
Conjecture 1: sequence is infinite.
Conjecture 2: a(1), a(2) and a(3) are composites; there are no other numbers n > 3 such that a(n) = composite number.

Examples

			Sets of divisors of a(n): (1, 89, 607, 54023); (1, 67, 809, 54203); (1, 83, 6029, 500407); (1, 23456789); …
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000000] | Seqint(Reverse(Sort(&cat[(Intseq(k)): k in Divisors(n)]))) eq 123456789];

Formula

a(1) = 54023; a(2) = 54203; a(3) = 500407; a(4) … a(3101) = A160402; a(3102) ... a(22659) = A243363; ....

A243360 a(n) = arrange digits of concatenation of divisors of n (A037278, A176558) in decreasing order (in base 10).

Original entry on oeis.org

1, 21, 31, 421, 51, 6321, 71, 8421, 931, 52110, 111, 6432211, 311, 74211, 55311, 864211, 711, 9863211, 911, 54221100, 73211, 222111, 321, 8644322211, 5521, 632211, 97321, 87442211, 921, 65533211100, 311, 86432211, 333111, 743211, 75531, 986643322111, 731
Offset: 1

Views

Author

Jaroslav Krizek, Jun 04 2014

Keywords

Comments

See A243363 = numbers n such that a(n) = 9876543210.

Examples

			For n = 12; divisors of 12: 1, 2, 3, 4, 6, 12; a(12) = 6432211.
		

Crossrefs

Programs

A243363 Numbers with divisors containing all the digits 0-9 and each digit appears exactly once (in base 10).

Original entry on oeis.org

203457869, 203465789, 203465897, 203468579, 203475869, 203478659, 203485697, 203485769, 203495867, 203548967, 203564897, 203568947, 203574689, 203584679, 203584769, 203594687, 203596847, 203598467, 203645879, 203645987, 203648957, 203654987, 203659487, 203674589
Offset: 1

Views

Author

Jaroslav Krizek, Jun 04 2014

Keywords

Comments

Primes made up of distinct digits except 1.
There are no composite numbers with divisors containing all the digits 0-9 and each digit appears exactly once.
Subsequence of A029743 (primes with distinct digits).
Numbers n such that A243360(n) = 9876543210.
Sequence contains 19558 terms, the last term is a(19558) = 987625403.

Crossrefs

Programs

  • Magma
    [n: n in [1..203457879] | Seqint(Sort(&cat[(Intseq(k)): k in Divisors(n)])) eq 9876543210];
    
  • Mathematica
    Select[Range[203*10^6,204*10^6],Sort[Flatten[IntegerDigits/@ Divisors[#]]] == Range[0,9]&] (* Harvey P. Dale, Aug 22 2016 *)
  • Python
    # generates entire sequence
    from sympy import isprime
    from itertools import permutations as perms
    dist = (int("".join(p)) for p in perms("023456789", 9) if p[0] != "0")
    afull = [k for k in dist if isprime(k)]
    print(afull[:24]) # Michael S. Branicky, Aug 04 2022

A243364 Primes whose reverse concatenation of divisors (A176558) contains all the digits 1-9 exactly once; the number of digits 0 is arbitrary (in base 10).

Original entry on oeis.org

23456789, 23458679, 23459687, 23465789, 23465987, 23469587, 23475869, 23478569, 23489657, 23495867, 23496587, 23498567, 23546879, 23546987, 23548697, 23564897, 23564987, 23567849, 23569487, 23576489, 23584679, 23587649, 23589647, 23594687, 23645879, 23645987
Offset: 1

Views

Author

Jaroslav Krizek, Jun 04 2014

Keywords

Comments

Sequence differs from A160402; a(n) = A160402(n) for first 3098 terms, a(3099) = 203457869.
Subsequence of A243362. Supersequence of A160402 and A243363.
Primes p such that A243361(p) = 123456789.
Conjecture: sequence is infinite.

Examples

			Prime 200000000003456789 is in sequence because A176558(200000000003456789) = 2000000000034567891; each digit 1 - 9 appears exactly once.
		

Crossrefs

Formula

a(1) ... a(3098) = A160402; a(3099) ... a(22656) = A243363; ...
Showing 1-4 of 4 results.