cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243535 Numbers whose list of divisors contains 2 distinct digits (in base 10).

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 22, 31, 33, 41, 55, 61, 71, 77, 101, 113, 121, 131, 151, 181, 191, 199, 211, 311, 313, 331, 661, 811, 881, 911, 919, 991, 1111, 1117, 1151, 1171, 1181, 1511, 1777, 1811, 1999, 2111, 2221, 3313, 3331, 4111, 4441, 6661, 7177, 7717, 8111
Offset: 1

Views

Author

Jaroslav Krizek, Jun 13 2014

Keywords

Comments

Numbers k such that A037278(k), A176558(k) and A243360(k) contain 2 distinct digits.
Many of the composite terms are in A203897. - Charles R Greathouse IV, Sep 06 2016
Terms are either repdigit numbers (A010785) or contain only 1 and a single other digit. - Michael S. Branicky, Nov 16 2022

Examples

			121 is in the sequence because the list of divisors of 121, i.e., (1, 11, 121), contains 2 distinct digits (1, 2).
		

Crossrefs

Sequences of numbers n such that the list of divisors of n contains k distinct digits for 1 <= k <= 10: k = 1: A243534; k = 2: A243535; k = 3: A243536; k = 4: A243537; k = 5: A243538; k = 6: A243539; k = 7: A243540; k = 8: A243541; k = 9: A243542; k = 10: A095050.
Cf. A243543 (the smallest number m whose list of divisors contains n distinct digits).

Programs

  • Excel
    [Row n = 1..10000; Column A: A(n) = A095048(n); Column B: B(n) = IF(A(n)=2;A(n)); Arrangement of column B]
    
  • Maple
    dmax:= 6: # get all terms of <= dmax digits
    Res:= {}:
    for a in [0,$2..9] do
        S:= {0}:
        for d from 1 to dmax do
            S:= map(t -> (10*t+1,10*t+a), S);
            Res:= Res union select(filter, S)
        od
    od:
    sort(convert(Res,list)): # Robert Israel, Sep 05 2016
  • Mathematica
    Select[Range[9000],Length[Union[Flatten[IntegerDigits/@Divisors[ #]]]] == 2&] (* Harvey P. Dale, Dec 14 2017 *)
  • PARI
    isok(n) = vd = []; fordiv(n, d, vd = concat(vd, digits(d))); #Set(vd) == 2; \\ Michel Marcus, Jun 13 2014
    
  • Python
    from sympy import divisors
    from itertools import count, islice, product
    def ok(n):
        s = set("1"+str(n))
        if len(s) > 2: return False
        for d in divisors(n, generator=True):
            s |= set(str(d))
            if len(s) > 2: return False
        return len(s) == 2
    def agen():
        yield from [2, 3, 5, 7]
        for d in count(2):
            s = set()
            for first, other in product("123456789", "0123456789"):
                for p in product(sorted(set(first+other)), repeat=d-1):
                    if other not in p: continue
                    t = int(first+"".join(p))
                    if ok(t): s.add(t)
            yield from sorted(s)
    print(list(islice(agen(), 52))) # Michael S. Branicky, Nov 16 2022