A243595 Primes p such that 3 + 2*p^2 is also prime.
2, 5, 7, 23, 37, 43, 47, 83, 103, 107, 113, 127, 197, 373, 433, 463, 467, 523, 547, 587, 593, 617, 733, 743, 797, 863, 877, 887, 953, 1097, 1163, 1213, 1297, 1427, 1493, 1567, 1583, 1657, 1667, 1693, 1783, 1877, 1987, 2053, 2063, 2087, 2207, 2357, 2557, 2753
Offset: 1
Examples
2 is in the sequence because 3+2*2^2 = 11 is prime; also, for the comment, 11 = 6+5. 5 is in the sequence because 3+2*5^2 = 53 is prime, also 53 = 6*8+5. 7 is in the sequence because 3+2*7^2 = 101 is prime, also 101 = 6*16+5.
Links
- Bruno Berselli, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[p: p in PrimesUpTo(4000) | IsPrime(3+2*p^2)]; // Bruno Berselli, Jun 07 2014
-
Mathematica
Select[Prime[Range[500]], PrimeQ[3 + 2 #^2] &] (* Bruno Berselli, Jun 07 2014 *)
-
PARI
s=[]; forprime(p=2, 4000, if(isprime(3+2*p^2), s=concat(s, p))); s \\ Colin Barker, Jun 07 2014
-
Sage
[p for p in primes(4000) if is_prime(3+2*p^2)] # Bruno Berselli, Jun 07 2014
Comments