A243645 Number of ways two L-tiles can be placed on an n X n square.
0, 0, 0, 1, 20, 87, 244, 545, 1056, 1855, 3032, 4689, 6940, 9911, 13740, 18577, 24584, 31935, 40816, 51425, 63972, 78679, 95780, 115521, 138160, 163967, 193224, 226225, 263276, 304695, 350812, 401969, 458520, 520831, 589280, 664257, 746164, 835415, 932436
Offset: 0
Examples
a(3) = 1: ._____. |_| |_| | |___| |___|_| .
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Column k=2 of A243608.
Programs
-
Maple
a:= n-> `if`(n<2, 0, ((((n-4)*n-1)*n+18)*n-16)/2): seq(a(n), n=0..50);
-
Mathematica
CoefficientList[Series[x^3 (x^3+3x^2-15x-1)/(x-1)^5,{x,0,40}],x] (* or *) LinearRecurrence[{5,-10,10,-5,1},{0,0,0,1,20,87,244},40] (* Harvey P. Dale, Mar 06 2016 *)
Formula
G.f.: x^3*(x^3+3*x^2-15*x-1) / (x-1)^5.
a(n) = (n^4-4*n^3-n^2+18*n-16)/2 for n>=2, a(n) = 0 for n<2.
Comments