cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A243608 Number T(n,k) of ways k L-tiles can be placed on an n X n square; triangle T(n,k), n>=0, 0<=k<=A229093(n), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 9, 20, 11, 1, 1, 16, 87, 196, 176, 46, 2, 1, 25, 244, 1195, 3145, 4431, 3161, 1007, 111, 2, 1, 36, 545, 4544, 22969, 73098, 147502, 185744, 140288, 59140, 12313, 1046, 26, 1, 49, 1056, 13215, 106819, 587149, 2251309, 6082000, 11562155
Offset: 0

Views

Author

Alois P. Heinz, Jun 07 2014

Keywords

Comments

An L-tile is a 2 X 2 square with the upper right 1 X 1 subsquare removed and no rotations are allowed.

Examples

			T(3,1) = 4:
  ._____.   ._____.   ._____.   ._____.
  | |_|_|   |_|_|_|   |_| |_|   |_|_|_|
  |___|_|   | |_|_|   |_|___|   |_| |_|
  |_|_|_|   |___|_|   |_|_|_|   |_|___|
T(4,4) = 1:
  ._______.
  | |_| |_|
  |___|___|
  | |_| |_|
  |___|___|
T(5,6) = 2:
  ._________.   ._________.
  | |_|_| |_|   |_| |_| |_|
  |___| |___|   | |___|___|
  |_| |___|_|   |___|_| |_|
  | |___| |_|   | |_| |___|
  |___|_|___|   |___|___|_| .
Triangle T(n,k) begins:
  1;
  1;
  1,  1;
  1,  4,   1;
  1,  9,  20,   11,    1;
  1, 16,  87,  196,  176,   46,    2;
  1, 25, 244, 1195, 3145, 4431, 3161, 1007, 111, 2;
		

Crossrefs

Columns k=0-6 give: A000012, A000290(n-1) for n>0, A243645, A243646, A243647, A243648, A243649.
Row sums give main diagonal of A226444 or A066864(n-1) for n>0.

Programs

  • Maple
    b:= proc(n, l) option remember; local k;
          if n<2 then 1
        elif min(l[])>0 then b(n-1, map(h->h-1, l))
        else for k while l[k]>0 do od; expand(
             b(n, subsop(k=1, l))+ `if`(n>1 and k (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
    seq(T(n), n=0..10);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{k}, Which[n<2, 1, Min[l]>0, b[n-1, l-1], True, For[k = 1, l[[k]] > 0, k++]; Expand[b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 1}]], 0]]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, Table[0, {n}]]];
    Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 12 2017, translated from Maple *)

A348134 Number of ways two L-tiles (with rotation) can be placed on an n X n square.

Original entry on oeis.org

0, 0, 22, 336, 1422, 3952, 8790, 16992, 29806, 48672, 75222, 111280, 158862, 220176, 297622, 393792, 511470, 653632, 823446, 1024272, 1259662, 1533360, 1849302, 2211616, 2624622, 3092832, 3620950, 4213872, 4876686, 5614672, 6433302, 7338240, 8335342, 9430656
Offset: 1

Views

Author

Nicolas Bělohoubek, Oct 02 2021

Keywords

Comments

All terms are even, because groups of ways, which are connected by 90 degrees rotation symmetry, are made up from 4 or 2 ways, so the number of ways will be some 4m+2n, and 4m+2n is even.

Examples

			For a(1) and a(2) there are fewer squares on the main square then squares of the 2 L-tiles, so a(1) = a(2) = 0.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,0,22,336,1422,3952},40] (* Harvey P. Dale, Mar 04 2023 *)

Formula

a(n) = 2*(n - 2)*(4*n^3 - 8*n^2 - 19*n + 32) for n > 1.
G.f.: 2*x^3*(11 + 113*x - 19*x^2 - 9*x^3)/(1 - x)^5. - Stefano Spezia, Oct 03 2021
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Wesley Ivan Hurt, Aug 05 2025
Showing 1-2 of 2 results.