A243660 Triangle read by rows: the x = 1+q Narayana triangle at m=2.
1, 3, 2, 12, 16, 5, 55, 110, 70, 14, 273, 728, 702, 288, 42, 1428, 4760, 6160, 3850, 1155, 132, 7752, 31008, 50388, 42432, 19448, 4576, 429, 43263, 201894, 395010, 418950, 259350, 93366, 18018, 1430, 246675, 1315600, 3010700, 3853696, 3010700, 1466080, 433160, 70720, 4862
Offset: 1
Examples
Triangle begins: 1; 3, 2; 12, 16, 5; 55, 110, 70, 14; 273, 728, 702, 288, 42; 1428, 4760, 6160, 3850, 1155, 132; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 8.
Crossrefs
Programs
-
Mathematica
polrecip[P_, x_] := P /. x -> 1/x // Together // Numerator; P[n_, m_] := Sum[Binomial[m n + 1, k] Binomial[(m+1) n - k, n - k] (1-x)^k x^(n-k), {k, 0, n}]/(m n + 1); T[m_] := Reap[For[i=1, i <= 20, i++, z = polrecip[P[i, m], x] /. x -> 1+q; Sow[CoefficientList[z, q]]]][[2, 1]]; T[2] // Flatten (* Jean-François Alcover, Oct 08 2018, from PARI *)
-
PARI
N(n,m)=sum(k=0,n,binomial(m*n+1,k)*binomial((m+1)*n-k,n-k)*(1-x)^k*x^(n-k))/(m*n+1); T(m)=for(i=1,20,z=subst(polrecip(N(i,m)),x,1+q);print(Vecrev(z))); T(2) /* Lars Blomberg, Jul 17 2017 */
-
PARI
T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n; \\ Andrew Howroyd, Nov 23 2018
Formula
From Werner Schulte, Nov 23 2018: (Start)
T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n.
More generally: T(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(m*n,k-1) / n, where m = 2.
Sum_{k=1..n} (-1)^k * T(n,k) = -1. (End)
Extensions
Corrected example and a(22)-a(43) from Lars Blomberg, Jul 12 2017
a(44)-a(45) from Werner Schulte, Nov 23 2018
Comments