cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A243869 Expansion of x^4/[(1+x)*Product_{k=1..3} (1-k*x)].

Original entry on oeis.org

1, 5, 20, 70, 231, 735, 2290, 7040, 21461, 65065, 196560, 592410, 1782691, 5358995, 16098830, 48340180, 145107921, 435498525, 1306845100, 3921234350, 11765101151, 35298099655, 105899891370, 317710858920, 953154946381, 2859509578385, 8578618213640
Offset: 4

Views

Author

R. J. Mathar, Jun 13 2014

Keywords

Comments

The number of ways to partition a set of n people around a circular table into 4 affinity groups with no two members of a group seated next to each other [Knuth].
The first two primes of the sequence are a(5) and a(96). - Bruno Berselli, Jun 13 2014

Crossrefs

Cf. A000975 (3 affinity groups).
Column k=4 of A261139.

Programs

  • Magma
    [(3^n-4*2^n+(-1)^n+6)/24: n in [4..30]]; // Bruno Berselli, Jun 13 2014
    
  • Mathematica
    Table[(3^n - 4 2^n + (-1)^n + 6)/24, {n, 4, 30}] (* Bruno Berselli, Jun 13 2014 *)
  • PARI
    for(n=4,50, print1(( 3^n - 4*2^n + (-1)^n + 6 )/24, ", ")) \\ G. C. Greubel, Oct 11 2017

Formula

a(n) - 3*a(n-1) = A000975(n-3).
From Bruno Berselli, Jun 13 2014: (Start)
G.f.: x^4/(1 - 5*x + 5*x^2 + 5*x^3 - 6*x^4).
a(n) = ( 3^n - 4*2^n + (-1)^n + 6 )/24. (End)
a(n) = 5*a(n-1) - 5*a(n-2) - 5*a(n-3) + 6*a(n-4). - Wesley Ivan Hurt, May 27 2021
a(n) = Sum_{i=0..n-1} Stirling2(i,3)*(-1)^(i+n-1). (See Peter Bala's original formula at A105794 dated Jul 10 2013.) - Igor Victorovich Statsenko, May 31 2024