cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A347952 Decimal expansion of exp(1) * (gamma - Ei(-1)).

Original entry on oeis.org

2, 1, 6, 5, 3, 8, 2, 2, 1, 5, 3, 2, 6, 9, 3, 6, 3, 5, 9, 4, 2, 0, 9, 8, 6, 3, 4, 8, 4, 9, 2, 4, 3, 0, 5, 6, 8, 3, 8, 1, 4, 2, 0, 7, 6, 7, 7, 4, 1, 4, 4, 3, 6, 9, 0, 2, 3, 0, 1, 3, 9, 1, 7, 1, 8, 9, 4, 9, 4, 2, 4, 2, 5, 7, 9, 7, 7, 9, 8, 7, 1, 7, 9, 7, 6, 9, 2, 6, 0, 3, 5, 1, 4, 1, 5, 5, 6, 7, 5, 7, 2, 6, 7, 6, 4, 7, 5, 3, 4, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Oct 23 2021

Keywords

Examples

			2.16538221532693635942098634849243056838142076774144369...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[1] (EulerGamma - ExpIntegralEi[-1]), 10, 110] [[1]]
  • PARI
    exp(1)*(Euler + eint1(1)) \\ Michel Marcus, Oct 24 2021

Formula

Equals Sum_{k>=1} H(k) / k!, where H(k) is the k-th harmonic number.
Equals -Integral_{x=0..1} exp(x)*log(1-x) dx. - Amiram Eldar, Oct 23 2021

A244499 Decimal expansion of e/gamma, the ratio of Euler number and the Euler-Mascheroni constant.

Original entry on oeis.org

4, 7, 0, 9, 3, 0, 0, 1, 6, 9, 3, 2, 7, 1, 0, 3, 3, 3, 0, 7, 4, 4, 1, 4, 3, 2, 1, 7, 7, 5, 4, 7, 0, 0, 4, 6, 3, 5, 1, 6, 6, 1, 6, 7, 8, 3, 2, 9, 0, 6, 4, 7, 1, 9, 6, 0, 9, 7, 8, 7, 0, 3, 8, 7, 1, 4, 8, 8, 1, 8, 3, 6, 1, 2, 4, 9, 5, 8, 1, 1, 6, 3, 1, 3, 8, 8, 5, 4, 8, 8, 1, 9, 2, 3, 6, 0, 7, 2, 0, 3, 0, 1, 7, 5, 7
Offset: 1

Views

Author

Stanislav Sykora, Jun 29 2014

Keywords

Examples

			4.709300169327103330744143217754700463516616783290647196...
		

References

  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 1.10, page 2.

Crossrefs

Programs

  • Magma
    R:= RealField(100); Exp(1)/EulerGamma(R); // G. C. Greubel, Aug 30 2018
  • Mathematica
    RealDigits[E/EulerGamma, 10, 100][[1]] (* G. C. Greubel, Aug 30 2018 *)
  • PARI
    exp(1)/Euler
    

Formula

Equals lim_{n->oo} (g(n)^gamma/gamma^g(n))^(2*n), where g(n) = H(n) - log(n) and H(n) = A001008(n)/A002805(n) is the n-th harmonic number (Furdui, 2007 and 2013). - Amiram Eldar, Mar 26 2022
Showing 1-2 of 2 results.