cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A051683 Triangle read by rows: T(n,k) = n!*k.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 24, 48, 72, 96, 120, 240, 360, 480, 600, 720, 1440, 2160, 2880, 3600, 4320, 5040, 10080, 15120, 20160, 25200, 30240, 35280, 40320, 80640, 120960, 161280, 201600, 241920, 282240, 322560, 362880, 725760, 1088640, 1451520, 1814400, 2177280, 2540160, 2903040, 3265920
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de)

Keywords

Comments

Numbers with only one nonzero digit when written in factorial base. - Franklin T. Adams-Watters, Nov 28 2011
In other words, numbers m such that A034968(m) = A099563(m). - Antti Karttunen, Jul 02 2013
When the numbers denote finite permutations (as row numbers of A055089) these are the circular shifts to the right within an interval. The subsequence A001563 denotes the circular shifts that start with the first element. Compare A211370 for circular shifts to the left. - Tilman Piesk, Apr 29 2017

Examples

			Table begins
   1;
   2,  4;
   6, 12, 18;
  24, 48, 72, 96; ...
		

Crossrefs

Programs

  • Haskell
    a051683 n k = a051683_tabl !! (n-1) !! (k-1)
    a051683_row n = a051683_tabl !! (n-1)
    a051683_tabl = map fst $ iterate f ([1], 2) where
       f (row, n) = (row' ++ [head row' + last row'], n + 1) where
         row' = map (* n) row
    -- Reinhard Zumkeller, Mar 09 2012
    
  • Magma
    [[Factorial(n)*k: k in [1..n]]: n in [1..15]]; // Vincenzo Librandi, Jun 15 2015
    
  • Mathematica
    T[n_, k_] := n!*k; Flatten[Table[T[n, k], {n, 9}, {k, n}]] (* Jean-François Alcover, Apr 22 2011 *)
  • PARI
    for(n=1,10, for(k=1,n, print1(n!*k, ", "))) \\ G. C. Greubel, Mar 27 2018
    
  • Python
    from math import isqrt, factorial, comb
    def A051683(n): return factorial(a:=(m:=isqrt(k:=n<<1))+(k>m*(m+1)))*(n-comb(a,2)) # Chai Wah Wu, Jun 25 2025
  • Scheme
    (define (A051683 n) (* (A000142 (A002024 n)) (A002260 n))) ;; Antti Karttunen, Jul 02 2013
    

Formula

T(n,k) = A000142(A002024(n)) * A002260(n,k) = A002024(n)! * A002260(n,k) - Antti Karttunen, Jul 02 2013
Sum_{n>=1} 1/a(n) = e * (gamma - Ei(-1)) = A347952. - Amiram Eldar, Oct 13 2024

A348573 Decimal expansion of exp(-1) * (Ei(1) - gamma).

Original entry on oeis.org

4, 8, 4, 8, 2, 9, 1, 0, 6, 9, 9, 5, 6, 8, 7, 6, 4, 6, 3, 1, 0, 4, 0, 1, 4, 1, 4, 2, 2, 1, 7, 3, 0, 5, 7, 4, 7, 2, 4, 4, 6, 9, 9, 5, 2, 8, 2, 3, 9, 7, 3, 2, 1, 4, 5, 6, 2, 6, 6, 5, 7, 3, 6, 6, 0, 3, 9, 7, 4, 5, 0, 3, 2, 5, 5, 8, 5, 4, 6, 8, 2, 0, 9, 1, 0, 9, 7, 0, 2, 7, 1, 4, 5, 6, 1, 3, 1, 1, 9, 3, 3, 5, 4, 1, 5, 8, 0, 7, 6, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 23 2021

Keywords

Examples

			0.48482910699568764631040141422173057472446995282397321...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[-1] (ExpIntegralEi[1] - EulerGamma), 10, 110] [[1]]
  • PARI
    (-real(eint1(-1))-Euler)/exp(1) \\ Michel Marcus, Oct 24 2021

Formula

Equals Sum_{k>=1} (-1)^(k+1) * H(k) / k!, where H(k) is the k-th harmonic number.
Equals -Integral_{x=0..1} exp(-x)*log(1-x) dx. - Amiram Eldar, Oct 23 2021

A351164 Decimal expansion of gamma * BesselI(0,2) + BesselK(0,2).

Original entry on oeis.org

1, 4, 2, 9, 7, 0, 6, 2, 1, 8, 7, 3, 7, 2, 0, 8, 3, 1, 3, 1, 8, 6, 7, 4, 6, 5, 6, 5, 5, 4, 5, 2, 8, 0, 9, 5, 7, 7, 3, 7, 2, 7, 7, 8, 9, 6, 8, 3, 9, 9, 2, 0, 3, 4, 6, 8, 7, 2, 4, 0, 9, 1, 3, 3, 9, 1, 8, 9, 8, 2, 5, 1, 8, 7, 3, 1, 0, 9, 6, 5, 4, 3, 4, 8, 8, 7, 4, 9, 8, 0, 6, 1, 1, 8, 1, 7, 2, 4, 3, 4, 0, 1, 6, 4, 9, 4, 0, 4, 8, 4
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 03 2022

Keywords

Examples

			1.4297062187372083131867465655452809577372778968399203468724...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[EulerGamma BesselI[0, 2] + BesselK[0, 2], 10, 110] [[1]]

Formula

Equals Sum_{k>=1} H(k) / (k!)^2, where H(k) is the k-th harmonic number.

A377400 Decimal expansion of e*(gamma - Ei(-1))/2.

Original entry on oeis.org

1, 0, 8, 2, 6, 9, 1, 1, 0, 7, 6, 6, 3, 4, 6, 8, 1, 7, 9, 7, 1, 0, 4, 9, 3, 1, 7, 4, 2, 4, 6, 2, 1, 5, 2, 8, 4, 1, 9, 0, 7, 1, 0, 3, 8, 3, 8, 7, 0, 7, 2, 1, 8, 4, 5, 1, 1, 5, 0, 6, 9, 5, 8, 5, 9, 4, 7, 4, 7, 1, 2, 1, 2, 8, 9, 8, 8, 9, 9, 3, 5, 8, 9, 8, 8, 4, 6, 3, 0, 1, 7, 5, 7, 0, 7, 7, 8, 3, 7, 8
Offset: 1

Views

Author

Stefano Spezia, Oct 27 2024

Keywords

Examples

			1.08269110766346817971049317424621528419071038...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E(EulerGamma-ExpIntegralEi[-1])/2,10,100][[1]]

Formula

Equals Sum_{n>=1} (1/n!)*Sum_{k=1..n} 1/(2*k) (see Shamos).
Equals A347952 / 2.

A353053 Decimal expansion of Pi * BesselY(0,2) / 2 - gamma * BesselJ(0,2).

Original entry on oeis.org

6, 7, 2, 4, 6, 2, 9, 6, 6, 9, 3, 6, 3, 6, 3, 6, 2, 4, 9, 2, 8, 3, 3, 6, 1, 9, 7, 8, 6, 2, 3, 0, 3, 1, 8, 4, 8, 1, 6, 8, 2, 4, 7, 3, 0, 5, 5, 3, 0, 1, 7, 1, 3, 8, 9, 7, 3, 8, 1, 2, 1, 3, 3, 7, 5, 2, 1, 0, 2, 8, 6, 5, 3, 6, 3, 9, 1, 4, 0, 5, 9, 6, 9, 8, 8, 2, 4, 7, 1, 4, 3, 2, 6, 7, 6, 4, 2, 7, 1, 3, 9, 1, 3, 7, 3, 1, 3, 2, 0, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 20 2022

Keywords

Examples

			0.672462966936363624928336197862303184816824730553017...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi BesselY[0, 2]/2 - EulerGamma BesselJ[0, 2], 10, 110] [[1]]
  • PARI
    Pi*bessely(0,2)/2 - Euler*besselj(0,2) \\ Michel Marcus, Apr 20 2022

Formula

Equals Sum_{k>=1} (-1)^(k+1) * H(k) / (k!)^2, where H(k) is the k-th harmonic number.
Showing 1-5 of 5 results.