A244641 Decimal expansion of the sum of the reciprocals of the pentagonal numbers (A000326).
1, 4, 8, 2, 0, 3, 7, 5, 0, 1, 7, 7, 0, 1, 1, 1, 2, 2, 3, 5, 9, 1, 6, 5, 7, 4, 5, 3, 1, 2, 5, 4, 2, 1, 3, 8, 1, 6, 5, 8, 4, 0, 5, 4, 2, 5, 3, 7, 5, 5, 0, 7, 7, 7, 9, 6, 3, 4, 1, 9, 8, 0, 6, 5, 5, 2, 4, 3, 5, 9, 6, 9, 8, 5, 2, 9, 4, 7, 3, 0, 1, 6, 9, 3, 6, 7, 2, 2, 2, 7, 6, 2, 2, 9, 1, 3, 6, 0, 9, 7, 5, 0, 7, 6, 8
Offset: 1
Examples
1.482037501770111223591657453125421381658405425375507779634198065524359698529473...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Hongwei Chen and G. C. Greubel, Sum of the Reciprocals of Polygonal Numbers (Solved), SIAM Problems and solutions.
- Hongwei Chen and G. C. Greubel, Siam, Problems and Solutions, problem 07-003 and the solution
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(139)); R:= RealField(); 3*Log(3)-Pi(R)*Sqrt(3)/3; // G. C. Greubel, Mar 24 2024
-
Mathematica
RealDigits[Sum[2/(3*n^2-n), {n,1,Infinity}], 10, 111][[1]] RealDigits[3*Log[3] - Pi*Sqrt[3]/3, 10, 140][[1]] (* G. C. Greubel, Mar 24 2024 *)
-
SageMath
numerical_approx(3*log(3)-pi*sqrt(3)/3, digits=139) # G. C. Greubel, Mar 24 2024
Formula
Sum_{n>=1} 2/(3*n^2 - n).
Equals 2*A294514. - Hugo Pfoertner, Apr 24 2025