cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A244953 a(n) = Sum_{i=0..n} (-i mod 4).

Original entry on oeis.org

0, 3, 5, 6, 6, 9, 11, 12, 12, 15, 17, 18, 18, 21, 23, 24, 24, 27, 29, 30, 30, 33, 35, 36, 36, 39, 41, 42, 42, 45, 47, 48, 48, 51, 53, 54, 54, 57, 59, 60, 60, 63, 65, 66, 66, 69, 71, 72, 72, 75, 77, 78, 78, 81, 83, 84, 84, 87, 89, 90, 90, 93, 95, 96, 96, 99
Offset: 0

Views

Author

Wesley Ivan Hurt, Jul 08 2014

Keywords

Comments

Partial sums of A158459.
Similar to A047271 with every third term repeated.

Examples

			To quickly generate terms of the sequence: start with zero for n=0, then add 3 more for n=1, then add 2 more for n=2, add 1 more..., then add 0..., and repeat.
		

Crossrefs

Cf. A158459. Same members as A047271. Similar to A130482.

Programs

  • Magma
    [&+[-i mod 4: i in [0..n]]: n in [0..70]]; // Bruno Berselli, Jul 09 2014
  • Maple
    A244953:=n->add(-i mod 4, i=0..n): seq(A244953(n), n=0..50);
  • Mathematica
    Table[Sum[Mod[-i, 4], {i, 0, n}], {n, 0, 50}]
    Table[1 + n + (2 (1 + n) - (1 + (-1)^n) (1 + 2 I^(n (n + 1))))/4, {n, 0, 70}] (* Bruno Berselli, Jul 09 2014 *)
    LinearRecurrence[{1,0,0,1,-1},{0,3,5,6,6},70] (* Harvey P. Dale, Oct 29 2023 *)
  • PARI
    a(n) = sum(i=0, n, -i % 4); \\ Michel Marcus, Jul 09 2014
    

Formula

a(n) = Sum_{i=0..n} A158459(i).
From Bruno Berselli, Jul 09 2014: (Start)
G.f.: (3 + 2*x + x^2)/((1 + x)*(1 - x)^2*(1 + x^2)).
a(n) = 1 + n + ( 2*(1 + n) - (1 + (-1)^n)*(1 + 2*i^(n*(n+1))) )/4, where i = sqrt(-1).
a(n) = 6 + Sum_{i=1..3}((4-i)*floor((n-i)/4)). (End)
a(n) = a(n-1) + a(n-4) - a(n-5). - Robert Israel, Jul 09 2014
a(n) = (3*n + 4 - (n mod 4 - 2)^2)/2. - Thomas Klemm, Aug 21 2022