A244963 a(n) = sigma(n) - n * Product_{p|n, p prime} (1 + 1/p).
0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 4, 0, 0, 0, 7, 0, 3, 0, 6, 0, 0, 0, 12, 1, 0, 4, 8, 0, 0, 0, 15, 0, 0, 0, 19, 0, 0, 0, 18, 0, 0, 0, 12, 6, 0, 0, 28, 1, 3, 0, 14, 0, 12, 0, 24, 0, 0, 0, 24, 0, 0, 8, 31, 0, 0, 0, 18, 0, 0, 0, 51, 0, 0, 4, 20, 0, 0, 0, 42, 13
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
Maple
A244963:= n -> numtheory:-sigma(n) - n*mul(1+1/t[1],t=ifactors(n)[2]): seq(A244963(n),n=1..1000); # Robert Israel, Jul 15 2014
-
Mathematica
nn = 200;Table[Sum[d, {d, Divisors[n]}], {n, 1, nn}] - Table[Sum[n/d Abs[MoebiusMu[d]], {d, Divisors[n]}], {n, 1, nn}] (* Geoffrey Critzer, Mar 18 2015 *)
-
PARI
A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ This function from Charles R Greathouse IV, Sep 09 2014 A244963(n) = (sigma(n) - A001615(n)); \\ Antti Karttunen, Nov 22 2017
Formula
Sum_{k=1..n} a(k) ~ c*n^2 + O(n*log(n)), where c = Pi^2/12 - 15/(2*Pi^2) = 0.062558... - Amiram Eldar, Mar 02 2021
Comments