A245176 a(n) = 2*a(n-1)+(n-2)*a(n-2)-(n-1)*a(n-3) with initial terms (1,2,4).
1, 2, 4, 8, 18, 44, 120, 352, 1116, 3736, 13232, 48928, 189080, 757584, 3148064, 13497600, 59704336, 271503648, 1268817472, 6078518912, 29837183008, 149789875904, 768674514816, 4026518397440, 21518708975040, 117199152735616, 650184360936192, 3670861106911744
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..800
- Tewodros Amdeberhan and Victor H. Moll, Involutions and their progenies, arXiv:1406.2356 [math.CO], 2014.
- Carlos M. da Fonseca and Anthony G. Shannon, Telephone numbers extensions, J. Interdisc. Math. (2025) Vol. 28, No. 4, 1573-1580. See p. 1577.
Crossrefs
Partial sums of A000085.
Programs
-
Magma
I:=[1,2,4]; [n le 3 select I[n] else 2*Self(n-1)-2*Self(n-2)+Self(n-3)+(n-1)*(Self(n-2)-Self(n-3)): n in [1..30]]; // Vincenzo Librandi, Jul 22 2014 // Uses incorrect offset
-
Maple
a:= proc(n) option remember; 2*a(n-1)+(n-2)*a(n-2)-(n-1)*a(n-3) end: a(0), a(1), a(2):= 1, 2, 4: seq(a(n), n=0..30); # Alois P. Heinz, Oct 19 2014
-
Mathematica
a[n_] := Sum[StirlingS1[j, k]*2^k*BellB[k, 1/2], {j, 0, n}, {k, 0, j}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 12 2018, after Emanuele Munarini *)
Formula
a(n) = Sum_{k=0..n} A000085(k). - Emanuele Munarini, Aug 31 2017
a(n) ~ exp(sqrt(n) - n/2 - 1/4) * n^(n/2) / sqrt(2). - Vaclav Kotesovec, Jun 12 2018
Extensions
More terms from Vincenzo Librandi, Jul 22 2014