cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245176 a(n) = 2*a(n-1)+(n-2)*a(n-2)-(n-1)*a(n-3) with initial terms (1,2,4).

Original entry on oeis.org

1, 2, 4, 8, 18, 44, 120, 352, 1116, 3736, 13232, 48928, 189080, 757584, 3148064, 13497600, 59704336, 271503648, 1268817472, 6078518912, 29837183008, 149789875904, 768674514816, 4026518397440, 21518708975040, 117199152735616, 650184360936192, 3670861106911744
Offset: 0

Views

Author

N. J. A. Sloane, Jul 19 2014

Keywords

Crossrefs

Partial sums of A000085.

Programs

  • Magma
    I:=[1,2,4]; [n le 3 select I[n] else 2*Self(n-1)-2*Self(n-2)+Self(n-3)+(n-1)*(Self(n-2)-Self(n-3)): n in [1..30]]; // Vincenzo Librandi, Jul 22 2014 // Uses incorrect offset
  • Maple
    a:= proc(n) option remember; 2*a(n-1)+(n-2)*a(n-2)-(n-1)*a(n-3) end:
    a(0), a(1), a(2):= 1, 2, 4:
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 19 2014
  • Mathematica
    a[n_] := Sum[StirlingS1[j, k]*2^k*BellB[k, 1/2], {j, 0, n}, {k, 0, j}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 12 2018, after Emanuele Munarini *)

Formula

a(n) = Sum_{k=0..n} A000085(k). - Emanuele Munarini, Aug 31 2017
a(n) ~ exp(sqrt(n) - n/2 - 1/4) * n^(n/2) / sqrt(2). - Vaclav Kotesovec, Jun 12 2018

Extensions

More terms from Vincenzo Librandi, Jul 22 2014