cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A245214 Numbers k such that A245212(k) < 0.

Original entry on oeis.org

144, 192, 216, 240, 288, 336, 360, 384, 432, 480, 504, 540, 576, 600, 648, 672, 720, 768, 792, 840, 864, 900, 936, 960, 1008, 1056, 1080, 1152, 1200, 1248, 1260, 1296, 1320, 1344, 1440, 1512, 1536, 1560, 1584, 1620, 1632, 1680, 1728, 1800, 1824, 1848, 1872, 1920, 1944, 1980, 2016, 2040, 2100, 2112, 2160, 2240
Offset: 1

Views

Author

Jaroslav Krizek, Jul 23 2014

Keywords

Comments

If d are divisors of k then values of sequence A245212(k) are by bending moments in point 0 of static forces of sizes tau(d) operating in places d on the cantilever as the nonnegative number axis of length k with bracket in point 0 by the schema: A245212(k) = (k * tau(k)) - Sum_{(d
Numbers k such that A038040(k) = k * tau(k) < A245211(k) = Sum_{(d
From Amiram Eldar, Jul 19 2024: (Start)
Numbers whose divisors have a mean abundancy index that is larger than 2.
The numbers of terms that do not exceed 10^k, for k = 3, 4, ..., are 24, 243, 2571, 25583, 254794, 2551559, 25514104, 255112225, ... . Apparently, the asymptotic density of this sequence exists and equals 0.02551... .
The least odd term in this sequence is a(276918705) = 10854718875. (End)

Examples

			Number 144 is in sequence because 144 * tau(144) = 2160  < Sum_{(d<144) | 144} (d * tau(d)) = 2226.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | (2*(n*(#[d: d in Divisors(n)]))-(&+[d*#([e: e in Divisors(d)]): d in Divisors(n)])) lt 0]
    
  • Mathematica
    f[p_, e_] := ((e+1)*p^2 - (e+2)*p + p^(-e))/((e+1)*(p-1)^2); s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[2500], s[#] > 2 &]  (* Amiram Eldar, Jul 19 2024 *)
  • PARI
    isok(n) = (n*numdiv(n) - sumdiv(n, d, (dMichel Marcus, Aug 06 2014
    
  • PARI
    is(n) = {my(f = factor(n)); prod(i = 1, #f~, p=f[i,1]; e=f[i,2]; (-2*p - e*p + p^2 + e*p^2 + p^(-e))/((e + 1)*(p - 1)^2)) > 2;} \\ Amiram Eldar, Jul 19 2024

A255242 Calculate the aliquot parts of a number n and take their sum. Then repeat the process calculating the aliquot parts of all the previous aliquot parts and add their sum to the previous one. Repeat the process until the sum to be added is zero. Sequence lists these sums.

Original entry on oeis.org

0, 1, 1, 4, 1, 8, 1, 12, 5, 10, 1, 30, 1, 12, 11, 32, 1, 36, 1, 38, 13, 16, 1, 92, 7, 18, 19, 46, 1, 74, 1, 80, 17, 22, 15, 140, 1, 24, 19, 116, 1, 90, 1, 62, 51, 28, 1, 256, 9, 62, 23, 70, 1, 136, 19, 140, 25, 34, 1, 286, 1, 36, 61, 192, 21, 122, 1, 86, 29, 114
Offset: 1

Author

Paolo P. Lava, Feb 19 2015

Keywords

Comments

a(n) = 1 if n is prime.

Examples

			The aliquot parts of 8 are 1, 2, 4 and their sum is 7.
Now, let us calculate the aliquot parts of 1, 2 and 4:
1 => 0;  2 => 1;  4 => 1, 2.  Their sum is 0 + 1 + 1 + 2 = 4.
Let us calculate the aliquot parts of 1, 1, 2:
1 => 0;  1 = > 0; 2 => 1. Their sum is 1.
We have left 1: 1 => 0.
Finally, 7 + 4 + 1 = 12. Therefore a(8) = 12.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n,t,v;
    for n from 1 to q do b:=0; a:=sort([op(divisors(n))]); t:=nops(a)-1;
    while add(a[k],k=1..t)>0 do b:=b+add(a[k],k=1..t); v:=[];
    for k from 2 to t do c:=sort([op(divisors(a[k]))]); v:=[op(v),op(c[1..nops(c)-1])]; od;
    a:=v; t:=nops(a); od; print(b); od; end: P(10^3);
  • Mathematica
    f[s_] := Flatten[Most[Divisors[#]] & /@ s]; a[n_] := Total@Flatten[FixedPointList[ f, {n}]] - n; Array[a, 100] (* Amiram Eldar, Apr 06 2019 *)
  • PARI
    ali(n) = setminus(divisors(n), Set(n));
    a(n) = my(list = List(), v = [n]); while (#v, my(w = []); for (i=1, #v, my(s=ali(v[i])); for (j=1, #s, w = concat(w, s[j]); listput(list, s[j]));); v = w;); vecsum(Vec(list)); \\ Michel Marcus, Jul 15 2023

Formula

a(1) = 0.
a(2^k) = k*2^(k-1) = A001787(k), for k>=1.
a(n^k) = (n^k-2^k)/(n-2), for n odd prime and k>=1.
In particular:
a(3^k) = A001047(k-1);
a(5^k) = A016127(k-1);
a(7^k) = A016130(k-1);
a(11^k) = A016135(k-1).
From Antti Karttunen, Nov 22 2024: (Start)
a(n) = A330575(n) - n.
Also, following formulas were conjectured by Sequence Machine:
a(n) = (A191161(n)-n)/2.
a(n) = Sum_{d|n} A001065(d)*A074206(n/d). [Compare to David A. Corneth's Apr 13 2020 formula for A330575]
a(n) = Sum_{d|n} A051953(d)*A067824(n/d).
a(n) = Sum_{d|n} A000203(d)*A174726(n/d).
a(n) = Sum_{d|n} A062790(d)*A253249(n/d).
a(n) = Sum_{d|n} A157658(d)*A191161(n/d).
a(n) = Sum_{d|n} A174725(d)*A211779(n/d).
a(n) = Sum_{d|n} A245211(d)*A323910(n/d).
(End)

A245212 a(n) = n * tau(n) - Sum_{(d

Original entry on oeis.org

1, 3, 5, 7, 9, 13, 13, 15, 20, 25, 21, 25, 25, 37, 43, 31, 33, 46, 37, 53, 63, 61, 45, 41, 64, 73, 74, 81, 57, 95, 61, 63, 103, 97, 115, 70, 73, 109, 123, 101, 81, 147, 85, 137, 166, 133, 93, 57, 132, 170, 163, 165, 105, 154, 187, 161, 183, 169, 117, 131, 121
Offset: 1

Author

Jaroslav Krizek, Jul 23 2014

Keywords

Comments

If d are divisors of n then values of sequence a(n) are the bending moments at point 0 of static forces of sizes tau(d) operating in places d on the cantilever as the nonnegative number axis of length n with support at point 0 by the schema: a(n) = (n * tau(n)) - Sum_{(d
If a(n) = 0 then n must be > 10^7.
Conjecture: a(n) = sigma(n) iff n is a power of 2 (A000079).
Number n = 72 is the smallest number n such that a(n) < n (see A245213).
Number n = 144 is the smallest number n such that a(n) < 0 (see A245214).

Examples

			For n = 6 with divisors [1, 2, 3, 6] we have: a(6) = 6 * tau(6) - (3 * tau(3) + 2 * tau(2) + 1 * tau(1)) = 6*4 - (3*2+2*2+1*1) = 13.
		

Crossrefs

Programs

  • Magma
    [(2*(n*(#[d: d in Divisors(n)]))-(&+[d*#([e: e in Divisors(d)]): d in Divisors(n)])): n in [1..1000]];
    
  • PARI
    a(n) = sumdiv(n, d, (-1)^(dJens Kruse Andersen, Aug 13 2014

Formula

a(n) = A038040(n) - A245211(n).
a(n) = 2 * A038040(n) - A060640(n) = 2 * (n * tau(n)) - Sum_{d | n} (d * tau(d)).

A245213 Numbers n such that A245212(n) < n.

Original entry on oeis.org

72, 96, 120, 144, 180, 192, 216, 240, 288, 336, 360, 384, 432, 480, 504, 528, 540, 576, 600, 624, 648, 672, 720, 756, 768, 792, 840, 864, 900, 936, 960, 972, 1008, 1056, 1080, 1120, 1152, 1176, 1200, 1224, 1248, 1260, 1280, 1296, 1320, 1344, 1368, 1440, 1512
Offset: 1

Author

Jaroslav Krizek, Jul 23 2014

Keywords

Comments

Numbers n such that A245212(n) = (n * tau(n)) - Sum_((d
If d are divisors of n then values of sequence A245212(n) are the bending moments at point 0 of static forces of sizes tau(d) operating in places d on the cantilever as the nonnegative number axis of length n with support at point 0 by the schema: A245212(n) = (n * tau(n)) - Sum_((d

Examples

			Number 72 is in sequence because A245212(72) = 62 < 72.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | (2*(n*(#[d: d in Divisors(n)]))-(&+[d*#([e: e in Divisors(d)]): d in Divisors(n)])) lt n]
Showing 1-4 of 4 results.