cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A382209 Numbers k such that 10+k and 10*k are perfect squares.

Original entry on oeis.org

90, 136890, 197402490, 284654260890, 410471246808090, 591899253243012090, 853518312705176632890, 1230772815021611461622490, 1774773545742851022483004890, 2559222222188376152809031436090, 3690396669622092669499600847844090, 5321549438372835441042271613559748890
Offset: 1

Views

Author

Emilio Martín, Mar 18 2025

Keywords

Comments

The limit of a(n+1)/a(n) is 1441.99930651839... = 721+228*sqrt(10) = (19+6*sqrt(10))^2.
If 10*A158490(n) is a perfect square, then A158490(n) is a term.

Examples

			90 is a term because 10+90=100 is a square and 10*90=900 is a square.
(3,1) is a solution to x^2 - 10*y^2 = -1, from which a(n) = 100*y^2-10 = 10*x^2 = 90.
		

Crossrefs

Subsequence of A158490.
Cf. A383734 = 2*A008843 (2+k and 2*k are squares).
Cf. 5*A075796^2 (5+k and 5*k are squares).
Cf. 5*A081071 (20+k and 20*k are squares).
Cf. A245226 (m such that k+m and k*m are squares).

Programs

  • Mathematica
    CoefficientList[Series[ 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)),{x,0,11}],x] (* or *) LinearRecurrence[{1443,-1443,1},{90,136890,197402490},12] (* James C. McMahon, May 08 2025 *)
  • Python
    from itertools import islice
    def A382209_gen(): # generator of terms
        x, y = 30, 10
        while True:
            yield x**2//10
            x, y = x*19+y*60, x*6+y*19
    A382209_list = list(islice(A382209_gen(),30)) # Chai Wah Wu, Apr 24 2025

Formula

a(n) = 10 * ((1/2) * (3+sqrt(10))^(2*n-1) + (1/2) * (3-sqrt(10))^(2*n-1))^2.
a(n) = 10 * (sinh((2n-1) * arcsinh(3)))^2.
a(n) = 10 * A173127(n)^2 = 100 * A097315(n)^2 - 10 (negative Pell's equation solutions).
a(n+2) = 1442 * a(n+1) - a(n) + 7200.
G.f.: 90*(1 + 78*x + x^2)/((1 - x)*(1 - 1442*x + x^2)). - Stefano Spezia, Apr 24 2025

A248194 Positive integers n such that the equation x^2 - n*y^2 = n*(n+1)/2 has integer solutions.

Original entry on oeis.org

1, 3, 8, 9, 17, 19, 24, 25, 33, 49, 51, 57, 67, 72, 73, 81, 88, 89, 96, 97, 99, 121, 129, 136, 147, 152, 163, 169, 177, 179, 193, 201, 211, 225, 233, 241, 243, 249, 264, 288, 289, 297, 313, 337, 339, 352, 361, 369, 387, 393, 408, 409, 441, 449, 451, 456, 457
Offset: 1

Views

Author

Colin Barker, Oct 03 2014

Keywords

Comments

All odd squares are in this sequence. Proof: Set n = (2k + 1)^2, then we have x^2 - (2k + 1)^2 * y^2 = (2k + 1)^2 * (2k^2 + 2k + 1). Rearranging gives x^2 = (2k + 1)^2 * (y^2 + 2k^2 + 2k + 1). As 2k^2 + 2k + 1 is odd, a careful selection of y makes the RHS square. So [(2k+1) * (k(k + 1) + 1), k(k + 1)]. E.g., if k=2, then (5*7)^2 - 25*6^2 = 1225 - 900 = 325 = 25*26/2. - Jon Perry, Nov 07 2014
No even squares are in the sequence. Proof: Rearrange the equation to read x^2 = n(n + 1 + 2y^2)/2, with n = 4k^2. n + 1 + 2y^2 is always odd and so the RHS contains an odd exponent of 2, and therefore cannot be square. - Jon Perry, Nov 15 2014
From Jon Perry, Nov 15 2014: (Start)
Odd squares + 8 are always in this sequence. Proof: Let m = 4k^2 + 4k + 9 and let n = (m+1)/2 = 2k^2 + 2k + 5.
Rearranging the equation x^2 - m*y^2 = m(m + 1)/2, we get x^2 = m(m + 1 + 2y^2)/2, and so x^2 = m(n + y^2) = (4k^2 + 4k + 9)(2k^2 + 2k + 5 + y^2).
We aim to find a y such that the last bracket on the RHS is z^2 * (4k^2 + 4k + 9), so that x equals z*m. We claim that if we let Y = ((n-3)/2)^2*m - n, then Y is a square, and letting Y = y^2, we have y^2 + n = Y + n = z^2 * m as required, with z = (n-3)/2 = k^2 + k + 1.
To prove that Y is a square, Y = [(n^2 - 6n + 9)*(2n - 1) - 4n]/4 = [2n^3 - 13n^2 + 20n - 9]/4 = [(n-1)^2*(2n-9)]/4, and with n as it is, 2n - 9 = 4k^2 + 4k + 1 = (2k + 1)^2, and so we arrive at Y = [(n-1)^2*(2k+1)^2]/4 = [(n-1)(2k+1)/2]^2 = [(k^2 + k + 2)(2k + 1)]^2, a square as required, with y = (k^2 + k + 2)(2k + 1). Also GCD(n-3,2n-1)=1 as required.
This gives a solution as [(k^2 + k + 1)*(4k^2 + 4k + 9), (k^2 + k + 2)*(2k + 1)]. E.g., if k=4, n=45 and a solution is [21*89, 22*9] = [1869, 198]. To validate, 1869^2 - 89*198^2 = 3493161 - 3489156 = 4005 = 89*45.
(End)

Examples

			3 is in the sequence because x^2 - 3*y^2 = 6 has integer solutions, including (x, y) = (3, 1) and (9, 5).
		

Crossrefs

Extensions

More terms from Lars Blomberg, Nov 02 2014
"Positive" added to definition by N. J. A. Sloane, Nov 02 2014

A383734 Numbers k such that 2+k and 2*k are squares.

Original entry on oeis.org

2, 98, 3362, 114242, 3880898, 131836322, 4478554082, 152139002498, 5168247530882, 175568277047522, 5964153172084898, 202605639573839042, 6882627592338442562, 233806732499933208098, 7942546277405390632802, 269812766699283348307202, 9165691521498228451812098
Offset: 1

Views

Author

Emilio Martín, May 07 2025

Keywords

Comments

The limit of a(n+1)/a(n) is 33.97056... = 17+12*sqrt(2) = (3+2*sqrt(2))^2 (see A156164).

Examples

			98 is a term becouse 98+2=100 is a square and 98*2=196 is a square.
		

Crossrefs

Cf. A382209 (10+k and 10*k are squares).
Cf. A245226 (m such that k+m and k*m are squares).

Programs

  • Mathematica
    LinearRecurrence[{35, -35, 1}, {2, 98, 3362}, 20] (* Amiram Eldar, May 07 2025 *)
  • Python
    from itertools import islice
    def A383734_gen(): # generator of terms
        x, y = 1, 7
        while True:
            yield 2*x**2
            x, y = y, 6*y - x
    A383734_list = list(islice(A383734_gen(), 100))

Formula

a(n) = (1/2) * ((3+2*sqrt(2))^(2*n-1) + (3-2*sqrt(2))^(1-2*n)) - 1.
a(n) = -2*sqrt(2)*sinh(n*log(17+12*sqrt(2))) + 3*cosh(n*log(17+12*sqrt(2))) - 1.
a(n) = 2*A002315(n-1)^2.
a(n) = A075870(n)^2 - 2.
a(n) = 34*a(n-1) - a(n-2) + 32.
G.f.: 2 * (1 + 14*x + x^2) / ((1 - x)*(1 - 34*x + x^2)). - Stefano Spezia, May 08 2025

A383898 a(n) is the smallest nonnegative integer k such that n + k and n*k are squares, or -1 if there is no such number.

Original entry on oeis.org

0, 2, -1, 0, 20, -1, -1, 8, 0, 90, -1, -1, 4212, -1, -1, 0, 272, 18, -1, 5, -1, -1, -1, -1, 0, 650, -1, -1, 142100, -1, -1, 32, -1, -1, -1, 0, 1332, -1, -1, 360, 41984, -1, -1, -1, 180, -1, -1, -1, 0, 50, -1, 117, 1755572, -1, -1, -1, -1, 568458, -1, -1, 53872730964
Offset: 1

Views

Author

Gonzalo Martínez, May 15 2025

Keywords

Comments

a(m^2) = 0, for all positive integers m.
If m is not in A245226 then a(m) = -1. Indeed, if (u, v) is the smallest solution of the equation x^2 - m*y^2 = m, then m + m*v^2 = u^2 and m*(m*v^2) = (m*v)^2. Therefore, a(m) = m*v^2.
The sequence A383734 contains the numbers k such that 2 + k and 2*k are squares, where A383734(2) = a(2). Similarly, A382209(1) = a(10).
a(181) <= 223502910856088814900 = 181*1111225770^2. - Michel Marcus, May 24 2025

Examples

			If n = 5, then 20 satisfies that 5 + 20 = 5^2 and 5*20 = 10^2, where 20 is the smallest integer greater than 5 with this property. So, a(5) = 20.
		

Crossrefs

Programs

  • PARI
    isok(m) = if (issquare(4*m), 1, #qfbsolve(Qfb(1, 0, -m), m, 2)); \\ A245226
    a(n) = if (!isok(n), return(-1)); my(k=0); while (!(issquare(n+k) && issquare(n*k)), k++); k; \\ Michel Marcus, May 21 2025
    
  • PARI
    isok(m) = if (issquare(4*m), 1, #qfbsolve(Qfb(1, 0, -m), m, 2)); \\ A245226
    a(n) = if (!isok(n), return(-1)); my(x = sqrtint(n)); while (! issquare(n*(x^2 - n)), x++); x^2-n; \\ Michel Marcus, May 24 2025

A248220 Values of n such that the equation x^2 - n*y^2 = n*(n+1)*(n+2)/6 has integer solutions.

Original entry on oeis.org

1, 2, 4, 7, 14, 16, 25, 31, 39, 48, 49, 52, 57, 64, 73, 74, 79, 84, 86, 97, 100, 112, 121, 127, 129, 134, 169, 192, 194, 196, 199, 217, 241, 244, 254, 256, 266, 273, 289, 292, 302, 304, 326, 336, 337, 350, 361, 372, 399, 400, 409, 448, 457, 484, 487, 489, 511
Offset: 1

Views

Author

Colin Barker, Oct 04 2014

Keywords

Examples

			7 is in the sequence because x^2-7*y^2=84 has integer solutions, including (x,y) = (14,4) and (28,10).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[300],Length[FullSimplify[Solve[x^2-#*y^2==#*(#+1)*(#+2)/6,{x,y},Integers]/.C[1]->1]]>0&] (* Vaclav Kotesovec, Oct 05 2014, Mathematica version >= 8 *)

Extensions

More terms from Vaclav Kotesovec, Oct 05 2014
Showing 1-5 of 5 results.