A245305 Numbers k such that 4k+1, 4k+3, and 6k+5 are all primes.
1, 4, 7, 37, 142, 154, 202, 214, 307, 424, 469, 487, 499, 559, 577, 664, 742, 814, 847, 979, 982, 1054, 1129, 1159, 1162, 1252, 1369, 1522, 1612, 1642, 1672, 1837, 1987, 2107, 2134, 2149, 2209, 2242, 2359, 2407, 2419, 2482, 2632, 2677, 2767, 2887, 2929, 2944
Offset: 1
Keywords
References
- W. Sierpiński, A Selection of Problems in the Theory of Numbers. Pergamon, 1964, p. 52, #15.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a245305 n = a245305_list !! (n-1) a245305_list = map ((`div` 4) . (subtract 1) . head) $ filter (all (== 1) . map a010051') $ iterate (zipWith (+) [4, 4, 6]) [1, 3, 5]
-
Magma
[n: n in [0..3*10^3] | IsPrime(4*n+1) and IsPrime(4*n+3) and IsPrime(6*n+5)]; // Vincenzo Librandi, Jun 15 2015
-
Mathematica
Select[Range[0, 3000], PrimeQ[4 # + 1] && PrimeQ[4 # + 3] && PrimeQ[6 # + 5] &] (* Vincenzo Librandi, Jun 15 2015 *)
-
PARI
isok(k) = isprime(4*k+1) && isprime(4*k+3) && isprime(6*k+5); \\ Michel Marcus, Jan 24 2022
Comments