cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A287389 Both k and its reverse are one less than a square.

Original entry on oeis.org

0, 3, 8, 80, 99, 323, 360, 575, 840, 4224, 5775, 9999, 32760, 36480, 36863, 42024, 84680, 349280, 808200, 829920, 848240, 998000, 999999, 3055503, 3272480, 3426200, 3640463, 3644280, 3682560, 5597955, 8462280, 8803088, 30481440, 32855823, 80622440, 99999999
Offset: 1

Views

Author

Bruno Berselli, May 24 2017

Keywords

Comments

Contains A028504. - Robert Israel, May 25 2017
Except for the first term, the first digit of each term is either 3, 4, 5, 8 or 9. - Chai Wah Wu, May 25 2017

Examples

			32760 is in the sequence because 32760 = 181^2-1 and its reverse 6723 = 82^2 - 1.
		

Crossrefs

Cf. A124664: both k and its reverse are one more than a square.

Programs

  • Maple
    r:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    select(x-> issqr(r(x)+1), [n^2-1$n=1..10000])[]; # Alois P. Heinz, May 24 2017
  • Mathematica
    Select[Range[0, 10^6], Function[n, Times @@ Boole@ Map[IntegerQ@ Sqrt@ # &, {n + 1, FromDigits@ Reverse@ IntegerDigits@ n + 1}] == 1]] (* Michael De Vlieger, May 24 2017 *)
  • PARI
    isok(n) = issquare(n+1) && issquare(fromdigits(Vecrev(digits(n)))+1); \\ Michel Marcus, May 24 2017

A245362 Semiprimes whose reversal + 1 is a square.

Original entry on oeis.org

51, 323, 341, 422, 591, 993, 998, 4227, 4265, 5129, 5534, 5921, 5937, 8049, 8657, 8801, 9953, 32133, 32282, 32471, 32597, 32817, 34091, 34379, 36611, 36863, 38937, 42011, 42243, 42605, 53211, 53673, 55745, 57167, 57903, 59543, 82151, 86354, 86781, 88217, 88433
Offset: 1

Views

Author

K. D. Bajpai, Jul 18 2014

Keywords

Comments

Semiprimes in A245361.
Similar sequence for primes at A167217.

Examples

			341 is in the sequence because 341 = 11 * 31, which is semiprime, and reversal(341) + 1 = 143 + 1 = 144 = 12^2.
591 is in the sequence because 591 = 3 * 197, which is semiprime, and reversal(591) + 1 = 195 + 1 = 196 = 14^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^5], PrimeOmega[#] == 2 && IntegerQ[Sqrt[FromDigits[Reverse[IntegerDigits[#]]] + 1]] &]
  • PARI
    revint(n) = eval(concat(Vecrev(Str(n))))
    select(n->bigomega(n)==2 && issquare(revint(n)+1), vector(100000, n, n)) \\ Colin Barker, Jul 20 2014
Showing 1-2 of 2 results.