A245466 a(n) = sigma_1(1) + sigma_2(2) + sigma_3(3) + ... + sigma_n-1(n-1) + sigma_n(n).
1, 6, 34, 307, 3433, 50883, 874427, 17717436, 405157609, 10414924259, 295726594871, 9214021138217, 312089127730471, 11424774176377721, 449318695089164129, 18896344248070459234, 846136606134407223412, 40192694877626586149007, 2018612350537940175272987
Offset: 1
Keywords
Examples
a(1) = 1 because sigma_1(1) = sigma(1) = 1. a(2) = 6: sigma_1(1) + sigma_2(2) = 1 + (1^2 + 2^2) = 6. a(3) = 34: sigma_1(1) + sigma_2(2) + sigma_3(3) = 6 + (1^3 + 3^3) = 34. a(4) = 307: sigma_1(1) + ... + sigma_4(4) = 34 + (1^4 + 2^4 + 4^4) = 307.
Links
- Jens Kruse Andersen, Table of n, a(n) for n = 1..100
Programs
-
Magma
[&+[DivisorSigma(i, i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Jul 29 2014
-
Magma
[n eq 1 select 1 else Self(n-1)+ DivisorSigma(n, n): n in [1..20]]; // Vincenzo Librandi, Aug 05 2015
-
Maple
B:= [seq(numtheory:-sigma[n](n),n=1..100)]: seq(add(B[i],i=1..n),n=1..100); # Robert Israel, Jul 28 2014
-
Mathematica
Table[Sum[DivisorSigma[k, k], {k, n}], {n, 20}] Accumulate[Table[DivisorSigma[n,n],{n,20}]] (* Harvey P. Dale, Apr 10 2018 *)
-
PARI
a(n) = sum(i=1,n,sigma(i,i)) vector(50, n, a(n)) \\ Derek Orr, Jul 27 2014
Formula
a(n) = Sum_{k=1..n} sigma_k(k).
a(1) = 1. a(n) = a(n-1) + sigma_n(n), for n > 1. - Jens Kruse Andersen, Jul 29 2014
a(n) = n + Sum_{d=2..n} (d^(d*(floor(n/d)+1))-d^d)/(d^d-1). - Chayim Lowen, Aug 04 2015
Comments