cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A111027 Wieferich primes in base 12.

Original entry on oeis.org

2693, 123653
Offset: 1

Views

Author

Walter Kehowski, Oct 05 2005

Keywords

Comments

I have searched up to the 9 millionth prime, 160481183 and gave up trying to find a third term. The sequence is conjectured to be infinite. If the behavior is similar to base 10, A045616, then the next term could be greater than 2*10^11. In base 12 with X for ten and E for eleven the sequence is [1685, 5E685] so it would be interesting to see if the third term ends in 685 as well. These primes are also the Wieferich numbers in base 12: 12^phi(n) = 1 mod n^2.
Richard Fischer has carried this search to 4.8 * 10^13 (as of January 2014). - John Blythe Dobson, Mar 06 2014

Crossrefs

Programs

  • Maple
    WP:=[]: for z from 1 to 1 do for k from 1 to 9000000 do p:=ithprime(k); if 12 &^(p-1) mod p^2 = 1 then WP:=[op(WP),p]; printf("p=%d, ",p); fi; if k mod 10^5 = 0 then printf("k=%d, ",k); fi; od; od; WP;
  • Mathematica
    Select[Prime[Range[1000000]], PowerMod[12, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)

Formula

12^(p-1) == 1 mod p^2

A241977 Numbers k>1 such that 10^phi(k) == 1 (mod k^2), where phi(n)=A000010(n).

Original entry on oeis.org

3, 487, 1461, 4383, 13149, 39447, 118341, 355023, 56598313, 169794939, 509384817, 1754547703, 5263643109, 7187985751, 15790929327, 21563957253, 27563378431, 33902389487, 47372787981, 50315900257, 64691871759, 82690135293, 101707168461, 150947700771
Offset: 1

Views

Author

Felix Fröhlich, Aug 10 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[400000], PowerMod[10, EulerPhi[#], #^2] == 1 &] (* Amiram Eldar, Oct 16 2023 *)
  • PARI
    for(n=2, 1e9, if(Mod(10, n^2)^(eulerphi(n))==1, print1(n, ", ")))

Extensions

Terms a(12) and beyond from Giovanni Resta, Jan 24 2020

A241978 Numbers n such that 6^phi(n) == 1 (modulo n^2), where phi(n) is Euler's totient function.

Original entry on oeis.org

66161, 330805, 534851, 2674255, 3152573, 10162169, 13371275, 50810845, 54715147, 129255493, 148170931, 254054225, 273575735, 301121113, 383006029, 646277465, 1289402357, 1505605565, 1915030145, 3228193673, 3407931413, 5721301147, 6075008171, 7528027825
Offset: 1

Views

Author

Felix Fröhlich, Aug 10 2014

Keywords

Comments

a(17) > 10^9.

Crossrefs

Programs

  • Mathematica
    Select[Range[65*10^7],PowerMod[6,EulerPhi[#],#^2]==1&] (* Harvey P. Dale, Jan 20 2020 *)
  • PARI
    for(n=2, 1e9, if(Mod(6, n^2)^(eulerphi(n))==1, print1(n, ", ")))

Extensions

Terms a(17) and beyond from Giovanni Resta, Jan 24 2020

A253016 Numbers k such that 11^phi(k) == 1 (mod k^2), where phi(k) = A000010(k).

Original entry on oeis.org

71, 142, 284, 355, 497, 710, 994, 1420, 1491, 1988, 2485, 2840, 2982, 3976, 4970, 5680, 5964, 7455, 9940, 11928, 14910, 19880, 23856, 29820, 39760, 59640, 79520, 119280, 238560, 477120
Offset: 1

Views

Author

Felix Fröhlich, Dec 26 2014

Keywords

Comments

No further terms up to 10^9.
No more terms less than 10^10. - Robert G. Wilson v, Jan 18 2015
The first 30 terms are divisible by 71. Are there any terms not divisible by 71? - Robert Israel, Dec 30 2014
By Corollary 5.9 in Agoh, Dilcher, Skula (1997), if there are no further Wieferich primes to base 11 apart from 71, then the answer is no. - Felix Fröhlich, Dec 30 2014

Crossrefs

Programs

  • Maple
    select(t -> 11 &^ numtheory:-phi(t) mod t^2 = 1, [$1..10^6]); # Robert Israel, Dec 30 2014
  • Mathematica
    a253016[n_] := Select[Range[n], PowerMod[11,EulerPhi[#], #^2] == 1 &]; a253016[500000] (* Michael De Vlieger, Dec 29 2014; modified by Robert G. Wilson v, Jan 18 2015 *)
  • PARI
    for(n=2, 1e9, if(Mod(11, n^2)^(eulerphi(n))==1, print1(n, ", ")))

A247154 a(n) = smallest composite c such that n^(A000010(c)) == 1 (mod c^2), i.e., smallest composite Wieferich number to base n.

Original entry on oeis.org

4, 3279, 22, 3279, 41542, 330805, 4, 3279, 4, 1461, 142, 1812389, 1726, 3883, 4, 3279, 4, 35, 6, 1967
Offset: 1

Views

Author

Felix Fröhlich, Nov 21 2014

Keywords

Comments

a(21) > 10^9
a(22)-a(28): 39, 4, 128165, 4, 9, 22, 9
a(29) > 10^9
a(30)-a(33): 1123787, 4, 3279, 4
a(34) > 10^9

Crossrefs

Programs

  • PARI
    for(n=1, 20, forcomposite(c=1, 1e9, if(Mod(n, c^2)^(eulerphi(c))==1, print1(c, ", "); next({2}))); print1("--, "))

A250206 Least base b > 1 such that b^A000010(n) = 1 (mod n^2).

Original entry on oeis.org

2, 5, 8, 7, 7, 17, 18, 15, 26, 7, 3, 17, 19, 19, 26, 31, 38, 53, 28, 7, 19, 3, 28, 17, 57, 19, 80, 19, 14, 107, 115, 63, 118, 65, 18, 53, 18, 69, 19, 7, 51, 19, 19, 3, 26, 63, 53, 17, 18, 57, 134, 19, 338, 161, 3, 31, 28, 41, 53, 107, 264, 115, 19, 127, 99, 161, 143, 65, 28, 99, 11, 55
Offset: 1

Views

Author

Eric Chen, Feb 21 2015

Keywords

Comments

a(n) = least base b > 1 such that n is a Wieferich number (see A077816).
At least, b = n^2+1 can satisfy this equation, so a(n) is defined for all n.
Least Wieferich number (>1) to base n: 2, 1093, 11, 1093, 2, 66161, 4, 3, 2, 3, 71, 2693, 2, 29, 4, 1093, 2, 5, 3, 281, 2, 13, 4, 5, 2, ...; each is a prime or 4. It is 4 if and only if n mod 72 is in the set {7, 15, 23, 31, 39, 47, 63}.
Does every natural number (>1) appear in this sequence? If yes, do they appear infinitely many times?
For prime n, a(n) = A185103(n), does there exist any composite n such that a(n) = A185103(n)?

Examples

			a(30) = 107 since A000010(30) = 8, 30^2 = 900, and 107 is the least base b > 1 such that b^8 = 1 (mod 900).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{b = 2, m = EulerPhi[n]}, While[ PowerMod[b, m, n^2] != 1, b++]; b]; f[1] = 2; Array[f, 72] (* Robert G. Wilson v, Feb 28 2015 *)
  • PARI
    a(n)=for(k=2,2^24,if((k^eulerphi(n))%(n^2)==1, return(k)))

Formula

a(prime(n)) = A039678(n) = A185103(prime(n)).
a(A077816(n)) = 2.
a(A242958(n)) <= 3.

A257660 Numbers n such that 13^phi(n) == 1 (mod n^2), where phi(n) = A000010(n).

Original entry on oeis.org

2, 863, 1726, 3452, 371953, 743906, 1487812, 1747591, 1859765, 2975624, 3495182, 3719530, 5242773, 6990364, 7439060, 8737955, 10485546, 14878120, 15993979, 17475910, 20971092, 26213865, 29756240, 31987958, 34951820, 41942184, 47981937, 52427730, 59512480
Offset: 1

Views

Author

Felix Fröhlich, Jul 26 2015

Keywords

Comments

The subsequence of primes in this sequence is A128667.

Crossrefs

Programs

  • Mathematica
    Select[Range@ 1000000, Mod[13^EulerPhi[#], #^2] == 1 &] (* Michael De Vlieger, Jul 27 2015 *)
  • PARI
    for(n=2, 1e9, if(Mod(13, n^2)^(eulerphi(n))==1, print1(n, ", ")))
Showing 1-7 of 7 results.