cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A374506 Expansion of 1/(1 - 2*x - 3*x^2)^(7/2).

Original entry on oeis.org

1, 7, 42, 210, 966, 4158, 17094, 67782, 261261, 983983, 3635632, 13217568, 47393892, 167919948, 588772152, 2045481480, 7048466271, 24111291897, 81939285582, 276810647190, 930096277110, 3109797881190, 10350813392010, 34309326304890, 113288127469335
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Pochhammer[n+1, 6]*Hypergeometric2F1[(1-n)/2, -n/2, 4, 4]/6!; Array[a,25,0] (* Stefano Spezia, Jul 10 2024 *)
  • PARI
    a(n) = binomial(n+6, 3)/20*sum(k=0, n\2, binomial(n+3, n-2*k)*binomial(2*k+3, k));

Formula

a(0) = 1, a(1) = 7; a(n) = ((2*n+5)*a(n-1) + 3*(n+5)*a(n-2))/n.
a(n) = (binomial(n+6,3)/20) * Sum_{k=0..floor(n/2)} binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = Pochhammer(n+1, 6)*hypergeom([(1-n)/2, -n/2], [4], 4)/6!. - Stefano Spezia, Jul 10 2024
a(n) = Sum_{k=0..n} (-2)^k * (3/2)^(n-k) * binomial(-7/2,k) * binomial(k,n-k). - Seiichi Manyama, Aug 23 2025

A374508 Expansion of 1/(1 - 2*x + 5*x^2)^(5/2).

Original entry on oeis.org

1, 5, 5, -35, -140, -84, 840, 2640, 495, -16445, -41041, 11375, 282100, 559300, -474300, -4399260, -6807225, 11062275, 63677075, 73363675, -208411280, -865816600, -665544100, 3475847700, 11129861925, 4130560161, -53332660395, -135538728395, 9634906640
Offset: 0

Views

Author

Seiichi Manyama, Jul 09 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:= Pochhammer[n+1, 4]*Hypergeometric2F1[(1-n)/2, -n/2, 3, -4]/4!; Array[a,29,0] (* Stefano Spezia, Jul 10 2024 *)
  • PARI
    a(n) = binomial(n+4, 2)/6*sum(k=0, n\2, (-1)^k*binomial(n+2, n-2*k)*binomial(2*k+2, k));

Formula

a(0) = 1, a(1) = 5; a(n) = ((2*n+3)*a(n-1) - 5*(n+3)*a(n-2))/n.
a(n) = (binomial(n+4,2)/6) * Sum_{k=0..floor(n/2)} (-1)^k * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = Pochhammer(n+1, 4)*hypergeom([(1-n)/2, -n/2], [3], -4)/4!. - Stefano Spezia, Jul 10 2024
a(n) = (-1)^n * Sum_{k=0..n} 2^k * (5/2)^(n-k) * binomial(-5/2,k) * binomial(k,n-k). - Seiichi Manyama, Aug 23 2025
Showing 1-2 of 2 results.