cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A242743 Decimal expansion of an Ising constant related to the random coloring problem.

Original entry on oeis.org

9, 2, 9, 6, 9, 5, 3, 9, 8, 3, 4, 1, 6, 1, 0, 2, 1, 4, 9, 8, 5, 3, 8, 4, 9, 7, 3, 6, 6, 5, 8, 7, 8, 1, 2, 1, 7, 6, 5, 8, 8, 2, 3, 7, 5, 1, 5, 1, 8, 0, 2, 1, 6, 7, 5, 8, 2, 3, 4, 3, 1, 4, 2, 9, 7, 0, 1, 9, 2, 0, 8, 4, 7, 4, 5, 7, 2, 5, 0, 8, 1, 2, 5, 6, 1, 8, 5, 3, 1, 2, 1, 0, 4, 4, 7, 7, 4, 6, 1, 5, 8, 8, 9, 4, 6
Offset: 0

Views

Author

Keywords

Comments

In Ising model on the 2D square lattice, the negated ratio of free energy per node to the temperature at the critical point. - Andrey Zabolotskiy, Sep 12 2017

Examples

			0.929695398341610214985384973665878...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.22 Lenz-Ising constants, p. 399.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Log(2)/2 + 2*Catalan(R)/Pi(R); // G. C. Greubel, Aug 25 2018
  • Mathematica
    RealDigits[Log[2]/2 + 2*Catalan/Pi, 10, 105] // First
  • PARI
    default(realprecision, 100); log(2)/2 + 2*Catalan/Pi \\ G. C. Greubel, Aug 25 2018
    

Formula

log(2)/2 + 2*G/Pi = log(2)/2 + A218387/2, where G is Catalan's constant.

A278928 Decimal expansion of sqrt(sqrt(2) + 1).

Original entry on oeis.org

1, 5, 5, 3, 7, 7, 3, 9, 7, 4, 0, 3, 0, 0, 3, 7, 3, 0, 7, 3, 4, 4, 1, 5, 8, 9, 5, 3, 0, 6, 3, 1, 4, 6, 9, 4, 8, 1, 6, 4, 5, 8, 3, 4, 9, 9, 4, 1, 0, 3, 0, 7, 8, 3, 6, 3, 3, 2, 6, 7, 1, 1, 4, 8, 3, 3, 3, 6, 7, 5, 2, 5, 6, 7, 8, 8, 7, 3, 3, 1, 0, 2, 7, 2, 7, 9
Offset: 1

Views

Author

Bobby Jacobs, Dec 01 2016

Keywords

Comments

A quartic integer with minimal polynomial x^4 - 2*x^2 - 1. - Charles R Greathouse IV, Dec 01 2016
Suppose f(n) has the recurrence f(2*n) = f(2*n - 1) + f(2*n - 2) and f(2*n + 1) = f(2*n) + f(2*n - 2), where f(0) and f(1) are not both 0. Then, lim_{n -> oo} f(n)^(1/n) is this constant.
Apart from the first digit, the same as A190283. - R. J. Mathar, Dec 09 2016
Imaginary part of sqrt(1 + i)^3, where i is the imaginary unit such that i^2 = -1. See A154747 for real part. - Alonso del Arte, Sep 09 2019

Examples

			1.553773974030037307344158953063146948164583499410307836332671...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 7.4, p. 466.

Crossrefs

Cf. A309948 and A309949 for real and imaginary parts of sqrt(1 + i).

Programs

Formula

Equals 1/A154747.
Limit_{n -> oo} A002965(n)^(1/n).
From Peter Bala, Jul 01 2024: (Start)
This constant occurs in the evaluation of Integral_{x = 0..Pi/2} 1/(1 + sin^4(x)) dx = Pi/4 * sqrt(sqrt(2) + 1).
Equals 2*Sum_{n >= 0} (-1/16)^n * binomial(4*n, 2*n) (a slowly converging series). (End)
Equals 2^(3/4)*cos(Pi/8). - Vaclav Kotesovec, Jul 01 2024
Equals Product_{k>=0} coth(Pi/4 + k*Pi/2). - Antonio Graciá Llorente, Dec 19 2024
Equals sqrt(A014176) = 1/A154747 = exp(A245592). - Hugo Pfoertner, Dec 19 2024
Showing 1-2 of 2 results.