A030706
Decimal expansion of 11^n contains no zeros (probably finite).
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 41
Offset: 1
- M. F. Hasler, Zeroless powers, OEIS Wiki, Mar 07 2014
- Eric Weisstein's World of Mathematics, Zero
For other zeroless powers x^n, see
A238938,
A238939,
A238940,
A195948,
A238936,
A195908 (x=7),
A245852,
A240945 (k=9),
A195946 (x=11),
A245853 (x=12),
A195945 (x=13);
A195942,
A195943,
A103662.
For the corresponding exponents, see
A007377,
A030700,
A030701,
A008839,
A030702,
A030703,
A030704,
A030705,
A030706 (this),
A195944.
-
Select[Range[0,41],DigitCount[11^#,10,0]==0&] (* Harvey P. Dale, Dec 31 2020 *)
-
for(n=0,99,vecmin(digits(11^n))&&print1(n",")) \\ M. F. Hasler, Mar 08 2014
Offset corrected and initial term 0 added by
M. F. Hasler, Sep 25 2011
A245853
Powers of 12 without the digit '0' in their decimal expansion.
Original entry on oeis.org
1, 12, 144, 1728, 248832, 2985984, 429981696, 61917364224, 1283918464548864, 3833759992447475122176, 11447545997288281555215581184
Offset: 1
Cf. Powers of k without the digit '0' in their decimal expansion:
A238938 (k=2),
A238939 (k=3),
A238940 (k=4),
A195948 (k=5),
A238936 (k=6),
A195908 (k=7),
A245852 (k=8),
A240945 (k=9),
A195946 (k=11), this sequence (k=12),
A195945 (k=13).
-
[12^n: n in [0..3*10^4] | not 0 in Intseq(12^n)];
-
Select[12^Range[0, 2*10^5], DigitCount[#, 10, 0]==0 &]
A252482
Exponents n such that the decimal expansion of the power 12^n contains no zeros.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 10, 14, 20, 26
Offset: 1
- M. F. Hasler, Zeroless powers, OEIS Wiki, Mar 07 2014
- Eric Weisstein's World of Mathematics, Zero
For zeroless powers x^n, see
A238938 (x=2),
A238939,
A238940,
A195948,
A238936,
A195908,
A245852,
A240945 (k=9),
A195946 (x=11),
A245853,
A195945;
A195942,
A195943,
A103662.
For the corresponding exponents, see
A007377,
A030700,
A030701,
A008839,
A030702,
A030703,
A030704,
A030705,
A030706, this sequence
A252482,
A195944.
-
Select[Range[0,30],DigitCount[12^#,10,0]==0&] (* Harvey P. Dale, Apr 06 2019 *)
-
for(n=0,9e9,vecmin(digits(12^n))&&print1(n","))
Showing 1-3 of 3 results.
Comments