cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A030706 Decimal expansion of 11^n contains no zeros (probably finite).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 41
Offset: 1

Views

Author

Keywords

Comments

See A195946 for the actual powers 11^n. - M. F. Hasler, Dec 17 2014
It appears that 41 is also the largest integer n such that 11^n is not pandigital, cf. A272269. - M. F. Hasler, May 18 2017

Crossrefs

For other zeroless powers x^n, see A238938, A238939, A238940, A195948, A238936, A195908 (x=7), A245852, A240945 (k=9), A195946 (x=11), A245853 (x=12), A195945 (x=13); A195942, A195943, A103662.
For the corresponding exponents, see A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706 (this), A195944.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Mathematica
    Select[Range[0,41],DigitCount[11^#,10,0]==0&] (* Harvey P. Dale, Dec 31 2020 *)
  • PARI
    for(n=0,99,vecmin(digits(11^n))&&print1(n",")) \\ M. F. Hasler, Mar 08 2014

Extensions

Offset corrected and initial term 0 added by M. F. Hasler, Sep 25 2011
Further edits by M. F. Hasler, Dec 17 2014

A240945 Powers of 9 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 9, 81, 729, 6561, 531441, 4782969, 282429536481, 2541865828329, 22876792454961, 16677181699666569, 278128389443693511257285776231761
Offset: 1

Views

Author

Vincenzo Librandi, Aug 04 2014

Keywords

Comments

Conjectured to be finite.

Crossrefs

Cf. A030705.
Cf. similar sequences listed in A245853.

Programs

  • Magma
    [9^n: n in [0..3*10^4] | not 0 in Intseq(9^n)];
  • Mathematica
    Select[9^Range[0, 2*10^5], DigitCount[#, 10, 0]==0 &]

A245852 Powers of 8 without the digit '0' in their decimal expansion.

Original entry on oeis.org

1, 8, 64, 512, 32768, 262144, 16777216, 134217728, 8589934592, 68719476736, 549755813888, 2251799813685248, 4722366482869645213696, 2417851639229258349412352
Offset: 1

Views

Author

Vincenzo Librandi, Aug 04 2014

Keywords

Comments

Conjectured to be finite.

Crossrefs

Subsequence of A001018.
Cf. similar sequences listed in A245853.

Programs

  • Magma
    [8^n: n in [0..3*10^4] | not 0 in Intseq(8^n)];
    
  • Mathematica
    Select[8^Range[0, 2*10^5], DigitCount[#, 10, 0]==0 &]
  • Python
    from itertools import count, islice
    def A245852_gen(): # generator of terms
        return filter(lambda n:not '0' in str(n),(1<<3*n for n in count(0)))
    A245852_list = list(islice(A245852_gen(),10)) # Chai Wah Wu, Nov 10 2022

A252482 Exponents n such that the decimal expansion of the power 12^n contains no zeros.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 8, 10, 14, 20, 26
Offset: 1

Views

Author

M. F. Hasler, Dec 17 2014

Keywords

Comments

Conjectured to be finite.
See A245853 for the actual powers 12^a(n).

Crossrefs

For zeroless powers x^n, see A238938 (x=2), A238939, A238940, A195948, A238936, A195908, A245852, A240945 (k=9), A195946 (x=11), A245853, A195945; A195942, A195943, A103662.
For the corresponding exponents, see A007377, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, this sequence A252482, A195944.
For other related sequences, see A052382, A027870, A102483, A103663.

Programs

  • Mathematica
    Select[Range[0,30],DigitCount[12^#,10,0]==0&] (* Harvey P. Dale, Apr 06 2019 *)
  • PARI
    for(n=0,9e9,vecmin(digits(12^n))&&print1(n","))
Showing 1-4 of 4 results.