A030706
Decimal expansion of 11^n contains no zeros (probably finite).
Original entry on oeis.org
0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 18, 41
Offset: 1
- M. F. Hasler, Zeroless powers, OEIS Wiki, Mar 07 2014
- Eric Weisstein's World of Mathematics, Zero
For other zeroless powers x^n, see
A238938,
A238939,
A238940,
A195948,
A238936,
A195908 (x=7),
A245852,
A240945 (k=9),
A195946 (x=11),
A245853 (x=12),
A195945 (x=13);
A195942,
A195943,
A103662.
For the corresponding exponents, see
A007377,
A030700,
A030701,
A008839,
A030702,
A030703,
A030704,
A030705,
A030706 (this),
A195944.
-
Select[Range[0,41],DigitCount[11^#,10,0]==0&] (* Harvey P. Dale, Dec 31 2020 *)
-
for(n=0,99,vecmin(digits(11^n))&&print1(n",")) \\ M. F. Hasler, Mar 08 2014
Offset corrected and initial term 0 added by
M. F. Hasler, Sep 25 2011
A240945
Powers of 9 without the digit '0' in their decimal expansion.
Original entry on oeis.org
1, 9, 81, 729, 6561, 531441, 4782969, 282429536481, 2541865828329, 22876792454961, 16677181699666569, 278128389443693511257285776231761
Offset: 1
Cf. similar sequences listed in
A245853.
-
[9^n: n in [0..3*10^4] | not 0 in Intseq(9^n)];
-
Select[9^Range[0, 2*10^5], DigitCount[#, 10, 0]==0 &]
A245852
Powers of 8 without the digit '0' in their decimal expansion.
Original entry on oeis.org
1, 8, 64, 512, 32768, 262144, 16777216, 134217728, 8589934592, 68719476736, 549755813888, 2251799813685248, 4722366482869645213696, 2417851639229258349412352
Offset: 1
Cf. similar sequences listed in
A245853.
-
[8^n: n in [0..3*10^4] | not 0 in Intseq(8^n)];
-
Select[8^Range[0, 2*10^5], DigitCount[#, 10, 0]==0 &]
-
from itertools import count, islice
def A245852_gen(): # generator of terms
return filter(lambda n:not '0' in str(n),(1<<3*n for n in count(0)))
A245852_list = list(islice(A245852_gen(),10)) # Chai Wah Wu, Nov 10 2022
A252482
Exponents n such that the decimal expansion of the power 12^n contains no zeros.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 10, 14, 20, 26
Offset: 1
- M. F. Hasler, Zeroless powers, OEIS Wiki, Mar 07 2014
- Eric Weisstein's World of Mathematics, Zero
For zeroless powers x^n, see
A238938 (x=2),
A238939,
A238940,
A195948,
A238936,
A195908,
A245852,
A240945 (k=9),
A195946 (x=11),
A245853,
A195945;
A195942,
A195943,
A103662.
For the corresponding exponents, see
A007377,
A030700,
A030701,
A008839,
A030702,
A030703,
A030704,
A030705,
A030706, this sequence
A252482,
A195944.
-
Select[Range[0,30],DigitCount[12^#,10,0]==0&] (* Harvey P. Dale, Apr 06 2019 *)
-
for(n=0,9e9,vecmin(digits(12^n))&&print1(n","))
Showing 1-4 of 4 results.
Comments