A245940 (2n^7 + 4n^6 - n^5 - 4n^4 - n^3) / 24.
0, 0, 17, 279, 1960, 8875, 30555, 87122, 216384, 483570, 994125, 1909985, 3469752, 6013189, 10010455, 16096500, 25111040, 38144532, 56590569, 82205115, 117173000, 164182095, 226505587, 308092774, 413668800, 548843750, 720231525, 935578917, 1203905304
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
Programs
-
Haskell
a245940 n = n^3 * (2 * n^3 + 2 * n^2 - 3 * n - 1) * (n + 1) `div` 24
-
Magma
[(2*n^7 + 4*n^6 - n^5 - 4*n^4 - n^3) / 24: n in [0..30]] // Vincenzo Librandi, Aug 09 2014
-
Maple
A245940:=n->(2*n^7 + 4*n^6 - n^5 - 4*n^4 - n^3) / 24: seq(A245940(n), n=0..30); # Wesley Ivan Hurt, Aug 09 2014
-
Mathematica
Table[(2 n^7 + 4 n^6 - n^5 - 4 n^4 - n^3)/24, {n, 0, 30}] (* Vincenzo Librandi, Aug 09 2014 *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,0,17,279,1960,8875,30555,87122},30] (* Harvey P. Dale, Apr 19 2018 *)
-
PARI
concat([0,0], Vec(x^2*(x^4+55*x^3+204*x^2+143*x+17)/(x-1)^8 + O(x^100))) \\ Colin Barker, Aug 08 2014
Formula
a(n) = n^3*(2*n^3 + 2*n^2 - 3*n - 1)*(n + 1)/24 = n^3*(n - 1)*(n + 1)*(2*n^2 + 4*n + 1)/24.
G.f.: x^2*(x^4 + 55*x^3 + 204*x^2 + 143*x + 17) / (x - 1)^8. - Colin Barker, Aug 08 2014
Comments