cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064216 Replace each p^e with prevprime(p)^e in the prime factorization of odd numbers; inverse of sequence A048673 considered as a permutation of the natural numbers.

Original entry on oeis.org

1, 2, 3, 5, 4, 7, 11, 6, 13, 17, 10, 19, 9, 8, 23, 29, 14, 15, 31, 22, 37, 41, 12, 43, 25, 26, 47, 21, 34, 53, 59, 20, 33, 61, 38, 67, 71, 18, 35, 73, 16, 79, 39, 46, 83, 55, 58, 51, 89, 28, 97, 101, 30, 103, 107, 62, 109, 57, 44, 65, 49, 74, 27, 113, 82, 127, 85, 24, 131
Offset: 1

Views

Author

Howard A. Landman, Sep 21 2001

Keywords

Comments

a((A003961(n) + 1) / 2) = n and A003961(a(n)) = 2*n - 1 for all n. If the sequence is indexed by odd numbers only, it becomes multiplicative. In this variant sequence, denoted b, even indices don't exist, and we get b(1) = a(1) = 1, b(3) = a(2) = 2, b(5) = 3, b(7) = 5, b(9) = 4 = b(3) * b(3), ... , b(15) = 6 = b(3) * b(5), and so on. This property can also be stated as: a(x) * a(y) = a(((2x - 1) * (2y - 1) + 1) / 2) for x, y > 0. - Reinhard Zumkeller [re-expressed by Peter Munn, May 23 2020]
Not multiplicative in usual sense - but letting m=2n-1=product_j (p_j)^(e_j) then a(n)=a((m+1)/2)=product_j (p_(j-1))^(e_j). - Henry Bottomley, Apr 15 2005
From Antti Karttunen, Jul 25 2016: (Start)
Several permutations that use prime shift operation A064989 in their definition yield a permutation obtained from their odd bisection when composed with this permutation from the right. For example, we have:
A243505(n) = A122111(a(n)).
A243065(n) = A241909(a(n)).
A244153(n) = A156552(a(n)).
A245611(n) = A243071(a(n)).
(End)

Examples

			For n=11, the 11th odd number is 2*11 - 1 = 21 = 3^1 * 7^1. Replacing the primes 3 and 7 with the previous primes 2 and 5 gives 2^1 * 5^1 = 10, so a(11) = 10. - _Michael B. Porter_, Jul 25 2016
		

Crossrefs

Odd bisection of A064989 and A252463.
Row 1 of A251721, Row 2 of A249821.
Cf. A048673 (inverse permutation), A048674 (fixed points).
Cf. A246361 (numbers n such that a(n) <= n.)
Cf. A246362 (numbers n such that a(n) > n.)
Cf. A246371 (numbers n such that a(n) < n.)
Cf. A246372 (numbers n such that a(n) >= n.)
Cf. A246373 (primes p such that a(p) >= p.)
Cf. A246374 (primes p such that a(p) < p.)
Cf. A246343 (iterates starting from n=12.)
Cf. A246345 (iterates starting from n=16.)
Cf. A245448 (this permutation "squared", a(a(n)).)
Cf. A253894, A254044, A254045 (binary width, weight and the number of nonleading zeros in base-2 representation of a(n), respectively).
Cf. A285702, A285703 (phi and sigma applied to a(n).)
Here obviously the variant 2, A151799(n) = A007917(n-1), of the prevprime function is used.
Cf. also A003961, A270430, A270431.

Programs

  • Mathematica
    Table[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger[2 n - 1], {n, 69}] (* Michael De Vlieger, Dec 18 2014, revised Mar 17 2016 *)
  • PARI
    a(n) = {my(f = factor(2*n-1)); for (k=1, #f~, f[k,1] = precprime(f[k,1]-1)); factorback(f);} \\ Michel Marcus, Mar 17 2016
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    def a(n):
        f=factorint(2*n - 1)
        return 1 if n==1 else reduce(mul, [prevprime(i)**f[i] for i in f]) # Indranil Ghosh, May 13 2017
  • Scheme
    (define (A064216 n) (A064989 (- (+ n n) 1))) ;; Antti Karttunen, May 12 2014
    

Formula

a(n) = A064989(2n - 1). - Antti Karttunen, May 12 2014
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime > 2} ((p^2-p)/(p^2-q(p))) = 0.6621117868..., where q(p) = prevprime(p) (A151799). - Amiram Eldar, Jan 21 2023

Extensions

More terms from Reinhard Zumkeller, Sep 26 2001
Additional description added by Antti Karttunen, May 12 2014

A246342 a(0) = 12, after which, if a(n-1) = product_{k >= 1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k >= 1} (p_{k+1})^(c_k)), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

12, 23, 15, 18, 38, 35, 39, 43, 24, 68, 86, 71, 37, 21, 28, 50, 74, 62, 56, 149, 76, 104, 230, 305, 235, 186, 278, 224, 1337, 1062, 2288, 8951, 4482, 16688, 67271, 33637, 16821, 66688, 571901, 338059, 181516, 258260, 455900, 1180337, 1080207, 1817863, 1157487, 984558, 1230848, 53764115
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Iterates of A048673 starting from value 12.
All numbers 1 .. 11 are in finite cycles of A048673/A064216, thus 12 is the smallest number in this cycle, regardless of whether the cycle is infinite or finite.
This sequence soon reaches much larger values than the corresponding A246343 (iterating the same cycle in the other direction). However, with the corresponding sequences starting from 16 (A246344 & A246345), there is no such pronounced difference, and with them the bias is actually the other way.

Examples

			Start with a(0) = 12; thereafter each new term is obtained by replacing each prime factor of the previous term with the next prime, to whose product 1 is added before it is halved:
12 = 2^2 * 3 = p_1^2 * p_2 -> ((p_2^2 * p_3)+1)/2 = ((9*5)+1)/2 = 23, thus a(1) = 23.
23 = p_9 -> (p_10 + 1)/2 = (29+1)/2 = 15, thus a(2) = 15.
		

Crossrefs

A246343 gives the terms of the same cycle when going in the opposite direction from 12.

Programs

  • PARI
    default(primelimit, 2^30);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    k = 12; for(n=0, 1001, write("b246342.txt", n, " ", k) ; k = A048673(k));
    (Scheme, with memoization-macro definec)
    (definec (A246342 n) (if (zero? n) 12 (A048673 (A246342 (- n 1)))))

Formula

a(0) = 12, and for n >= 1, a(n) = A048673(a(n-1)).

A246343 a(0) = 12, after which, if (2*a(n-1)) - 1 = product_{k >= 1} (p_k)^(c_k) then a(n) = product_{k >= 1} (p_{k-1})^(c_k), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

12, 19, 31, 59, 44, 46, 55, 107, 134, 166, 317, 398, 282, 557, 470, 622, 763, 531, 1051, 1267, 1807, 3607, 7211, 4522, 9041, 3700, 3725, 3982, 7951, 15889, 30053, 24018, 24189, 34535, 14630, 12916, 21769, 27599, 24524, 32678, 26094, 43073, 34446, 68881, 116479, 143359, 275221, 550439, 667462, 1051489
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Iterates of A064216 starting from value 12.
All numbers from 1 to 11 are in finite cycles of A048673/A064216, thus 12 is the smallest number in this cycle, regardless of whether it is infinite or finite.

Examples

			Start with a(0) = 12; then after each new term is obtained by doubling the previous term, from which one is subtracted, after which each prime factor is replaced with the previous prime:
12 -> ((2*12)-1) = 23 = p_9, and p_8 = 19, thus a(1) = 19.
19 -> ((2*19)-1) = 37 = p_12, and p_11 = 31, thus a(2) = 31.
31 -> ((2*31)-1) = 61 = p_18, and p_17 = 59, thus a(3) = 59.
59 -> ((2*59)-1) = 117 = 3*3*13 = p_2 * p_2 * p_6, and p_1 * p_1 * p_5 = 2*2*11 = 44, thus a(4) = 44.
		

Crossrefs

A246342 gives the terms of the same cycle when going to the opposite direction from 12.

Programs

  • PARI
    default(primelimit, 2^30);
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A064216(n) = A064989((2*n)-1);
    k = 12; for(n=0, 1001, write("b246343.txt", n, " ", k); k = A064216(k));
    (Scheme, with memoization-macro definec)
    (definec (A246343 n) (if (zero? n) 12 (A064216 (A246343 (- n 1)))))

Formula

a(0) = 12, a(n) = A064216(a(n-1)).

A246344 a(0) = 16, after which, if a(n-1) = product_{k >= 1} (p_k)^(c_k), then a(n) = (1/2) * (1 + product_{k >= 1} (p_{k+1})^(c_k)), where p_k indicates the k-th prime, A000040(k).

Original entry on oeis.org

16, 41, 22, 20, 32, 122, 101, 52, 77, 72, 338, 434, 611, 451, 280, 1040, 4820, 7907, 3960, 30713, 15364, 22577, 12154, 9791, 4902, 8108, 9131, 5815, 4099, 2056, 3551, 2095, 1474, 1385, 984, 2903, 1455, 1768, 4361, 5869, 2940, 19058, 18845, 13227, 11053, 8707, 4357, 2182, 1640, 4064, 15917, 9432, 46238
Offset: 0

Views

Author

Antti Karttunen, Aug 24 2014

Keywords

Comments

Iterates of A048673 starting from value 16.
Either this sequence is actually part of the cycle containing 12 (see A246342) or 16 is the smallest member of this cycle (regardless of whether this cycle is finite or infinite), which follows because all numbers 1 .. 11 are in finite cycles, and also 13 and 14 are in closed cycles and 15 is in the cycle of 12.

Examples

			Start with a(0) = 16; then after each new term is obtained by replacing each prime factor of the previous term with the next prime, to whose product is added one before it is halved:
16 = 2^4 = p_1^4 -> ((p_2^4)+1)/2 = (3^4 + 1)/2 = (81+1)/2 = 41, thus a(1) = 41.
41 = p_13 -> ((p_14)+1)/2 = (43+1)/2 = 22, thus a(2) = 22.
		

Crossrefs

A246345 gives the terms of the same cycle when going to the opposite direction from 16.

Programs

  • PARI
    default(primelimit, 2^30);
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i,1] = nextprime(f[i,1]+1)); factorback(f); \\ Using code of Michel Marcus
    A048673(n) = (A003961(n)+1)/2;
    k = 16; for(n=0, 1001, write("b246344.txt", n, " ", k) ; k = A048673(k));
    (Scheme, with memoization-macro definec)
    (definec (A246344 n) (if (zero? n) 16 (A048673 (A246344 (- n 1)))))

Formula

a(0) = 16, and for n >= 1, a(n) = A048673(a(n-1)).
Showing 1-4 of 4 results.