cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A193281 E.g.f.: A(x) = 1/[(1 - x^2)^(1 + 1/x)].

Original entry on oeis.org

1, 1, 3, 10, 49, 271, 1861, 14218, 125945, 1222525, 13274551, 155993586, 2006410033, 27654327715, 411146102641, 6498852124066, 109654601938801, 1954603251773273, 36899871955766155, 732088187170903162, 15288727416236948241, 334089096072180624631
Offset: 0

Views

Author

Paul D. Hanna, Jul 21 2011

Keywords

Comments

More generally, we have the identity:
Sum_{n>=0} (x^n/n!)*Product_{k=1..n} (1+k*y) = 1/(1 - x*y)^(1 + 1/y); here y=x.

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 49*x^4/4! + 271*x^5/5! +...
where:
A(x)^(x/(1+x)) = 1 + x^2 + x^4 + x^6 + x^8 + x^10 + x^12 +...
Also,
A(x) = 1 + x*(1+x) + x^2*(1+x)*(1+2*x)/2! + x^3*(1+x)*(1+2*x)*(1+3*x)/3! + x^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)/4! +...
The logarithm begins:
log(A(x)) = x + x^2 + x^3/2 + x^4/2 + x^5/3 + x^6/3 + x^7/4 + x^8/4 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x^2)^(1+1/x)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 08 2013 *)
  • PARI
    {a(n)=n!*polcoeff(1/(1 - x^2 +x^2*O(x^n))^((1+x)/x),n)}
    
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,x^m/m!*prod(k=1,m,1+k*x+x*O(x^n))),n)}
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, j/((j+1)\2)*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Apr 30 2022

Formula

E.g.f.: A(x) = Sum_{n>=0} x^n/n! * Product_{k=1..n} (1 + k*x).
E.g.f.: A(x)=1/[ (1 - x^2)*(1 - x^2)^(1/x)] = 1 + x*(1+x)/(G(0) - x*(1+x)) ; G(k) = 1 + k + x*(k*x+x+1) - x*(k+1)*(k*x+2*x+1)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Dec 02 2011
a(n) ~ n! * (n + log(n) + 2 + gamma - log(2))/4, where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 08 2013
From Peter Bala, Aug 31 2014: (Start)
E.g.f.: exp( sum{n = 1..inf} x^n/A110654(n) ).
It appears that a(n) = 1 ( mod n*(n - 1) ) for n even, while a(n) = 1 ( mod n*(n - 1)/2 ) for n odd [checked up to a(100)]. (End)
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k/A110654(k) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 30 2022

A353223 Expansion of e.g.f. (1 - x^3)^(-1/x^2).

Original entry on oeis.org

1, 1, 1, 1, 13, 61, 181, 2101, 19321, 107353, 1338121, 18021961, 153519301, 2162889301, 37434929533, 437750929981, 7054260835441, 146656527486001, 2197288472426641, 40414798347009553, 970905798377330941, 17791752518018762221, 370864149434372540101
Offset: 0

Views

Author

Seiichi Manyama, May 01 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^3)^(-1/x^2)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1-x^3)/x^2)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, (i+2)\3, (3*j-2)/j*v[i-3*j+3]/(i-3*j+2)!)); v;
    
  • PARI
    a(n) = n!*sum(k=0, n\3, abs(stirling(n-2*k, n-3*k, 1))/(n-2*k)!);

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..floor((n+2)/3)} (3*k-2)/k * a(n-3*k+2)/(n-3*k+2)!.
a(n) = n! * Sum_{k=0..floor(n/3)} |Stirling1(n-2*k,n-3*k)|/(n-2*k)!.
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / (3*exp(n)). - Vaclav Kotesovec, May 04 2022

A353205 Expansion of e.g.f. (1 - x^3)^(1 + 1/x + 1/x^2).

Original entry on oeis.org

1, -1, -1, -1, 13, 19, -29, 251, 281, -13033, 56071, -28601, -10136411, 57321419, -39757717, -17223709021, 139901102641, -12418205969, -56710054724849, 628073178260687, 380303328920381, -324513582131326141, 4616335903275095539, 5642278545451902859
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[(1 - x^3)^(1 + 1/x + 1/x^2), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 09 2022 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^3)^(1+1/x+1/x^2)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, x^k/((k+2)\3)))))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-(i-1)!*sum(j=1, i, j/((j+2)\3)*v[i-j+1]/(i-j)!)); v;

Formula

E.g.f.: exp( -Sum{k >= 1} x^k/A008620(k-1) ).
a(0) = 1; a(n) = -(n-1)! * Sum_{k=1..n} k/A008620(k-1) * a(n-k)/(n-k)!.

A353222 Expansion of e.g.f. (1 - x^3)^(-1/x).

Original entry on oeis.org

1, 0, 2, 0, 12, 60, 120, 2520, 15120, 90720, 1693440, 13305600, 140374080, 2724321600, 27744837120, 414096883200, 8689288608000, 111399326438400, 2114134793971200, 48501156601497600, 759659036405068800, 17279306372135808000, 434100706059205785600
Offset: 0

Views

Author

Seiichi Manyama, May 01 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^3)^(-1/x)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-log(1-x^3)/x)))
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, (i+1)\3, (3*j-1)/j*v[i-3*j+2]/(i-3*j+1)!)); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..floor((n+1)/3)} (3*k-1)/k * a(n-3*k+1)/(n-3*k+1)!.
a(n) ~ sqrt(2*Pi) * n^(n + 1/2) / (3*exp(n)). - Vaclav Kotesovec, May 04 2022
Showing 1-4 of 4 results.