cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A084940 Heptagorials: n-th polygorial for k=7.

Original entry on oeis.org

1, 1, 7, 126, 4284, 235620, 19085220, 2137544640, 316356606720, 59791398670080, 14050978687468800, 4018579904616076800, 1374354327378698265600, 553864793933615401036800, 259762588354865623086259200, 140271797711627436466579968000, 86407427390362500863413260288000
Offset: 0

Views

Author

Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003

Keywords

Crossrefs

Programs

  • Maple
    a := n->n!/2^n*mul(5*i+2,i=0..n-1); [seq(a(j),j=0..30)];
  • Mathematica
    polygorial[k_, n_] := FullSimplify[ n!/2^n (k -2)^n*Pochhammer[2/(k -2), n]]; Array[ polygorial[7, #] &, 16, 0] (* Robert G. Wilson v, Dec 26 2016 *)
    Join[{1},FoldList[Times,PolygonalNumber[7,Range[20]]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 29 2019 *)
  • PARI
    a(n)=n!/2^n*prod(i=1,n,5*i-3) \\ Charles R Greathouse IV, Dec 13 2016

Formula

a(n) = polygorial(n, 7) = (A000142(n)/A000079(n))*A047055(n) = (n!/2^n)*Product_{i=0..n-1}(5*i+2) = (n!/2^n)*5^n*Pochhammer(2/5, n) = (n!/2^n)*5^n*Gamma(n+2/5)*sin(2*Pi/5)*Gamma(3/5)/Pi.
D-finite with recurrence 2*a(n) = n*(5*n-3)*a(n-1). - R. J. Mathar, Mar 12 2019
a(n) ~ 5^n * n^(2*n + 2/5) * Pi /(Gamma(2/5) * 2^(n-1) * exp(2*n)). - Amiram Eldar, Aug 28 2025

A256191 Decimal expansion of Gamma(1/10).

Original entry on oeis.org

9, 5, 1, 3, 5, 0, 7, 6, 9, 8, 6, 6, 8, 7, 3, 1, 8, 3, 6, 2, 9, 2, 4, 8, 7, 1, 7, 7, 2, 6, 5, 4, 0, 2, 1, 9, 2, 5, 5, 0, 5, 7, 8, 6, 2, 6, 0, 8, 8, 3, 7, 7, 3, 4, 3, 0, 5, 0, 0, 0, 0, 7, 7, 0, 4, 3, 4, 2, 6, 5, 3, 8, 3, 3, 2, 2, 8, 2, 1, 0, 1, 1, 5, 3, 7, 1, 6, 3, 7, 9, 4, 2, 6, 6, 4, 4, 7, 2, 0, 9, 7, 9, 7, 3
Offset: 1

Views

Author

Keywords

Examples

			9.513507698668731836292487177265402192550578626088377...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/10); // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(GAMMA(1/10),100);
  • Mathematica
    RealDigits[Gamma[1/10],10,100][[1]]
  • PARI
    gamma(1/10)
    

Formula

From Vaclav Kotesovec, Apr 10 2024: (Start)
Equals 5^(1/4) * sqrt(1 + sqrt(5)) * Gamma(1/5) * Gamma(2/5) / (2^(7/10) * sqrt(Pi)).
Equals 2^(4/5) * sqrt(Pi) * Gamma(1/5) / Gamma(3/5). (End)

A340721 Decimal expansion of Gamma(3/5).

Original entry on oeis.org

1, 4, 8, 9, 1, 9, 2, 2, 4, 8, 8, 1, 2, 8, 1, 7, 1, 0, 2, 3, 9, 4, 3, 3, 3, 3, 8, 8, 3, 2, 1, 3, 4, 2, 2, 8, 1, 3, 2, 0, 5, 9, 9, 0, 3, 8, 7, 5, 9, 9, 2, 4, 7, 3, 5, 3, 3, 8, 6, 7, 9, 5, 6, 4, 0, 4, 5, 0, 8, 0, 1, 6, 3, 1, 2, 1, 9, 3, 4, 9, 3, 8, 2
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			1.489192248812817102..
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(3/5),120) ;
  • Mathematica
    RealDigits[Gamma[3/5], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)

Formula

this * A246745 = Pi/A019881. [DLMF (5.5.3)]
this * A256191 *2^(7/10)/sqrt(2*Pi) = 2*A175380 [DLMF (5.5.5)]

A340725 Decimal expansion of Gamma(9/10).

Original entry on oeis.org

1, 0, 6, 8, 6, 2, 8, 7, 0, 2, 1, 1, 9, 3, 1, 9, 3, 5, 4, 8, 9, 7, 3, 0, 5, 3, 3, 5, 6, 9, 4, 4, 8, 0, 7, 7, 8, 1, 6, 9, 8, 3, 8, 7, 8, 5, 0, 6, 0, 9, 7, 3, 1, 7, 9, 0, 4, 9, 3, 7, 0, 6, 8, 3, 9, 8, 1, 5, 7, 2, 1, 7, 7, 0, 2, 5, 4, 4, 7, 5, 6, 6, 9, 1
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			1.06862870211931935489..
		

Crossrefs

Programs

  • Maple
    evalf(GAMMA(9/10),120) ;
  • Mathematica
    RealDigits[Gamma[9/10], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)

Formula

this * A256191 = Pi/A019827 . [DLMF (5.5.3)]
A246745 * this *2^(3/10) /sqrt(2*Pi) = A340722 . [DLMF (5.5.5)]

A340724 Decimal expansion of Gamma(7/10).

Original entry on oeis.org

1, 2, 9, 8, 0, 5, 5, 3, 3, 2, 6, 4, 7, 5, 5, 7, 7, 8, 5, 6, 8, 1, 1, 7, 1, 1, 7, 9, 1, 5, 2, 8, 1, 1, 6, 1, 7, 7, 8, 4, 1, 4, 1, 1, 7, 0, 5, 5, 3, 9, 4, 6, 2, 4, 7, 9, 2, 1, 6, 4, 5, 3, 8, 8, 2, 5, 4, 1, 6, 8, 1, 5, 0, 8, 1, 8, 9, 7, 5, 7, 9, 8, 6
Offset: 1

Views

Author

R. J. Mathar, Jan 17 2021

Keywords

Examples

			1.29805533264755778568...
		

Crossrefs

Programs

Formula

this * A340723 = Pi/A019863 [DLMF (5.5.3)]
this * A175380 * 2^(9/10)/sqrt(2*Pi) = 2*A246745. [DLMF (5.5.5)]

A091545 First column sequence of the array (7,2)-Stirling2 A091747.

Original entry on oeis.org

1, 42, 5544, 1507968, 696681216, 489070213632, 485157651922944, 646229992361361408, 1112808046846264344576, 2405890997281623512973312, 6380422924790865556405223424, 20366309975932442856045473169408, 77025384328976498881563979526701056, 340606249502734078054275917467072069632
Offset: 1

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

Also sixth column (m=5) sequence of triangle A091543.

Crossrefs

Programs

  • Mathematica
    a[n_] := 5^(2*n) * Pochhammer[1/5, n] * Pochhammer[2/5, n] / 2; Array[a, 15] (* Amiram Eldar, Sep 01 2025 *)

Formula

a(n) = Product_{j=0..n-1} ((5*j+2)*(5*j+1))/2, n>=1. From eq.12 of the Blasiak et al. reference with r=7, s=2, k=1.
a(n) = (5^(2*n))*risefac(1/5, n)*risefac(2/5, n)/2, n>=1, with risefac(x, n) = Pochhammer(x, n).
a(n) = fac5(5*n-3)*fac5(5*n-4)/2, n>=1, with fac5(5*n-4)/2 = A034323(n) and fac5(5*n-3) = A008548(n) (5-factorials).
E.g.f.: (hypergeom([1/5, 2/5], [], 25*x)-1)/2.
a(n) = A091747(n, 2), n>=1.
D-finite with recurrence a(n) - (5*n-3)*(5*n-4)*a(n-1) = 0. - R. J. Mathar, Jul 27 2022
a(n) ~ Pi * (5/e)^(2*n) * n^(2*n-2/5) / (Gamma(1/5) * Gamma(2/5)). - Amiram Eldar, Sep 01 2025
a(n) ~ sqrt(Pi*(1 + sqrt(5))) * 5^(2*n + 1/4) * n^(2*n - 2/5) / (Gamma(1/10) * 2^(7/10) * exp(2*n)). - Vaclav Kotesovec, Sep 01 2025
Showing 1-6 of 6 results.