cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A256191 Decimal expansion of Gamma(1/10).

Original entry on oeis.org

9, 5, 1, 3, 5, 0, 7, 6, 9, 8, 6, 6, 8, 7, 3, 1, 8, 3, 6, 2, 9, 2, 4, 8, 7, 1, 7, 7, 2, 6, 5, 4, 0, 2, 1, 9, 2, 5, 5, 0, 5, 7, 8, 6, 2, 6, 0, 8, 8, 3, 7, 7, 3, 4, 3, 0, 5, 0, 0, 0, 0, 7, 7, 0, 4, 3, 4, 2, 6, 5, 3, 8, 3, 3, 2, 2, 8, 2, 1, 0, 1, 1, 5, 3, 7, 1, 6, 3, 7, 9, 4, 2, 6, 6, 4, 4, 7, 2, 0, 9, 7, 9, 7, 3
Offset: 1

Views

Author

Keywords

Examples

			9.513507698668731836292487177265402192550578626088377...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(1/10); // G. C. Greubel, Mar 10 2018
  • Maple
    evalf(GAMMA(1/10),100);
  • Mathematica
    RealDigits[Gamma[1/10],10,100][[1]]
  • PARI
    gamma(1/10)
    

Formula

From Vaclav Kotesovec, Apr 10 2024: (Start)
Equals 5^(1/4) * sqrt(1 + sqrt(5)) * Gamma(1/5) * Gamma(2/5) / (2^(7/10) * sqrt(Pi)).
Equals 2^(4/5) * sqrt(Pi) * Gamma(1/5) / Gamma(3/5). (End)

A216706 a(n) = Product_{k=1..n} (100 - 10/k).

Original entry on oeis.org

1, 90, 8550, 826500, 80583750, 7897207500, 776558737500, 76546504125000, 7558967282343750, 747497875698437500, 74002289694145312500, 7332954160601671875000, 727184620926332460937500, 72159089307305298046875000, 7164366724082454591796875000
Offset: 0

Views

Author

Michel Lagneau, Sep 16 2012

Keywords

Comments

This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).

Crossrefs

Programs

  • Maple
    seq(product(100-10/k, k=1.. n), n=0..20);
    seq((10^n/n!)*product(10*k+9, k=0.. n-1), n=0..20);

Formula

From Amiram Eldar, Aug 17 2025: (Start)
a(n) = 100^n * Gamma(n+9/10) / (Gamma(9/10) * Gamma(n+1)).
a(n) ~ c * 100^n / n^(1/10), where c = 1/Gamma(9/10) = 1/A340725 = 0.935778... . (End)

A025755 10th-order Patalan numbers (generalization of Catalan numbers).

Original entry on oeis.org

1, 1, 45, 2850, 206625, 16116750, 1316201250, 110936962500, 9568313015625, 839885253593750, 74749787569843750, 6727480881285937500, 611079513383472656250, 55937278532794804687500, 5154220664807521289062500, 477624448272163639453125000, 44478776745345238924072265625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(11 -(1 - 100*x)^(1/10))/10, {x, 0, 20}], x] (* Vincenzo Librandi, Dec 29 2012 *)
    a[n_] := 100^(n-1) * Pochhammer[9/10, n-1] / n!; a[0] = 1; Array[a, 26, 0] (* Amiram Eldar, Aug 20 2025 *)

Formula

G.f.: (11-(1-100*x)^(1/10))/10.
a(n) = 10^(n-1)*9*A035278(n-1)/n!, n >= 2, where 9*A035278(n-1) = (10*n-11)(!^10) = Product_{j=2..n} (10*j - 11). - Wolfdieter Lang
Conjecture: n*a(n) + 10*(-10*n+11)*a(n-1) = 0. - R. J. Mathar, Jul 28 2014
a(n) = 100^(n-1)*Pochhammer(9/10, n-1)/n! for n >= 1. Maple confirms this satisfies Mathar's conjecture for n >= 2 (it's not true for n=1). - Robert Israel, Oct 05 2014
a(n) ~ 100^(n-1) / (Gamma(9/10) * n^(11/10)). - Amiram Eldar, Aug 20 2025
Showing 1-3 of 3 results.