cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A246852 Numbers n such that sigma(n+2) - sigma(n) = n + 2.

Original entry on oeis.org

1, 2, 22, 14926, 31048, 69106, 246262, 5860168, 307164670, 881198662, 1489455646, 2386555630, 8225563702, 14311679062, 111494234182, 154357775302, 299004519622, 870455062822, 970388922262, 991817878342, 1677028870822, 1782783762502, 1830446935222
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2014

Keywords

Comments

Also numbers n such that A001065(n+2) = A000203(n). - Michel Marcus, Sep 06 2014

Examples

			Number 22 is in sequence because sigma(22+2) - sigma(22) = 60 - 36 = 24 = 22 + 2.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10^7] | SumOfDivisors(n+2)-SumOfDivisors(n) eq n+2]
    
  • Mathematica
    Select[Range[6*10^6], DivisorSigma[1, # + 2] - DivisorSigma[1, #] == # + 2 &] (* Jake L Lande, Jun 30 2024 *)
  • PARI
    for(n=1,10^7,if(sigma(n+2)-sigma(n)==n+2,print1(n,", "))) \\ Derek Orr, Sep 05 2014

Extensions

a(9)-a(14) from Hiroaki Yamanouchi, Sep 10 2014
a(15)-a(23) from Giovanni Resta, Jul 13 2015

A246851 a(n) = smallest number k such that sigma(k+n) - sigma(k) = k + n, or -1 if no solution exists.

Original entry on oeis.org

1, 1, 7, 1, 3577, 1, 25, 8, 13, 1, 403668223, 1, 833, 262, 19, 1, 27, 1, 793, 5, 45, 1, 1795, 66, 8, 9, 31, 1, 2005, 1, 309, 32, 261, 4238, 22490141, 1, 21, 40, 43, 1, 399, 1, 1897, 262, 193, 1, 27, 1252907952, 711, 49, 1158765, 1, 271259, 27, 129, 20518072
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2014

Keywords

Comments

a(p-1) = 1 for any prime p.
a(11) > 11*10^8. - Derek Orr, Sep 05 2014
a(35) > 88*10^7. - Derek Orr, Sep 05 2014
a(185), a(385) and a(869) > 10^11. - Hiroaki Yamanouchi, Sep 11 2014

Examples

			Sequence of numbers k < 10^7  such that sigma(k+n) - sigma(k) = k + n for 1 <= n <= 10:
n = 1: 1, 5, 8585, 16119, ... (A067816).
n = 2: 1, 2, 22, 14926, 31048, 69106, 246262, 5860168, ... (A246852).
n = 3: 7, 6285, 4693485, ... (A246853).
n = 4: 1, 4, 26, 122, 146, 458, 746, 3746, 47612, ... (A246854).
n = 5: 3577, 14773, 2843579, ... (A246855).
n = 6: 1, 3, 114, 116058, 340014, ...
n = 7: 25, 65017, ...
n = 8: 8, 34, 76, 13474, 19042, ...
n = 9: 13, 1743, 1773, 4323, 53175, 109035, 138535, ...
n = 10: 1, 20, 1958, 35150, 49010, 246686, 1030046, 1240694, ...
		

Crossrefs

Programs

Extensions

a(11)-a(56) from Hiroaki Yamanouchi, Sep 11 2014

A246854 Numbers n such that sigma(n+4) - sigma(n) = n + 4.

Original entry on oeis.org

1, 4, 26, 122, 146, 458, 746, 3746, 47612, 16065500, 388978292, 5313509288, 64278616556
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2014

Keywords

Comments

Also numbers n such that A001065(n+4) = A000203(n). - Michel Marcus, Sep 06 2014
a(14) (if it exists) > 10^11. - Hiroaki Yamanouchi, Sep 10 2014
a(14) (if it exists) > 10^13. - Giovanni Resta, Jul 13 2015

Examples

			Number 26 is in sequence because sigma(26+4) - sigma(26) = 72 - 42 = 30 = 26 + 4.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10^7] | SumOfDivisors(n+4)-SumOfDivisors(n) eq n+4]
    
  • PARI
    for(n=1,10^7,if(sigma(n+4)-sigma(n)==n+4,print1(n,", "))) \\ Derek Orr, Sep 05 2014

Extensions

a(10)-a(13) from Hiroaki Yamanouchi, Sep 10 2014

A246855 Numbers k such that sigma(k+5) - sigma(k) = k + 5.

Original entry on oeis.org

3577, 14773, 2843579
Offset: 1

Views

Author

Jaroslav Krizek, Sep 05 2014

Keywords

Comments

Also numbers k such that A001065(k+5) = A000203(k). - Michel Marcus, Sep 06 2014
a(4) (if it exists) > 10^11. - Hiroaki Yamanouchi, Sep 10 2014
a(4) (if it exists) > 10^13. - Giovanni Resta, Jul 13 2015
No other terms < 2.7*10^15. - Jud McCranie, Jul 27 2025

Examples

			Number 3577 is in sequence because sigma(3577+5) - sigma(3577) = 7800 - 4218 = 3582 = 3577 + 5.
		

Crossrefs

Programs

  • Magma
    [n:n in[1..10^7] | SumOfDivisors(n+5)-SumOfDivisors(n) eq n+5];
    
  • Mathematica
    Select[Range[285*10^4],DivisorSigma[1,#+5]-DivisorSigma[1,#]==#+5&] (* Harvey P. Dale, Jun 21 2024 *)
  • PARI
    for(n=1,10^7,if(sigma(n+5)-sigma(n)==n+5,print1(n,", "))) \\ Derek Orr, Sep 05 2014
Showing 1-4 of 4 results.