cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A246935 Number A(n,k) of partitions of n into k sorts of parts; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 14, 5, 0, 1, 5, 20, 39, 34, 7, 0, 1, 6, 30, 84, 129, 74, 11, 0, 1, 7, 42, 155, 356, 399, 166, 15, 0, 1, 8, 56, 258, 805, 1444, 1245, 350, 22, 0, 1, 9, 72, 399, 1590, 4055, 5876, 3783, 746, 30, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2014

Keywords

Comments

In general, column k > 1 is asymptotic to c * k^n, where c = Product_{j>=1} 1/(1-1/k^j) = 1/QPochhammer[1/k,1/k]. - Vaclav Kotesovec, Mar 19 2015
When k is a prime power greater than 1, A(n,k) is the number of conjugacy classes of n X n matrices over a field of size k. - Geoffrey Critzer, Nov 11 2022

Examples

			A(2,2) = 6: [2a], [2b], [1a,1a], [1a,1b], [1b,1a], [1b,1b].
Square array A(n,k) begins:
  1,  1,   1,    1,     1,      1,      1,      1, ...
  0,  1,   2,    3,     4,      5,      6,      7, ...
  0,  2,   6,   12,    20,     30,     42,     56, ...
  0,  3,  14,   39,    84,    155,    258,    399, ...
  0,  5,  34,  129,   356,    805,   1590,   2849, ...
  0,  7,  74,  399,  1444,   4055,   9582,  19999, ...
  0, 11, 166, 1245,  5876,  20455,  57786, 140441, ...
  0, 15, 350, 3783, 23604, 102455, 347010, 983535, ...
		

Crossrefs

Rows n=0-4 give: A000012, A001477, A002378, A027444, A186636.
Main diagonal gives A124577.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1, k) +`if`(i>n, 0, k*b(n-i, i, k))))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1, 0, b[n, i-1, k] + If[i>n, 0, k*b[n-i, i, k]]]]; A[n_, k_] := b[n, n, k];  Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Feb 03 2015, after Alois P. Heinz *)

Formula

G.f. of column k: Product_{i>=1} 1/(1-k*x^i).
T(n,k) = Sum_{i=0..k} C(k,i) * A255970(n,i).

A338676 Expansion of Product_{k>=1} 1 / (1 - 7^(k-1)*x^k).

Original entry on oeis.org

1, 1, 8, 57, 449, 3193, 25145, 178809, 1391314, 9996498, 76955586, 552257546, 4255024523, 30502987019, 232969386483, 1682476714724, 12762937304013, 92019035596293, 698222541789109, 5030814634614406, 37955614705675479, 274741644961416648, 2061916926761604144, 14909943849253537057
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 23; CoefficientList[Series[Product[1/(1 - 7^(k - 1) x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Sum[Length[IntegerPartitions[n, {k}]] 7^(n - k), {k, 0, n}], {n, 0, 23}]
    a[n_] := a[n] = If[n == 0, 1, (1/n) Sum[Sum[d 7^(k - k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]]; Table[a[n], {n, 0, 23}]

Formula

a(n) = Sum_{k=0..n} p(n,k) * 7^(n-k), where p(n,k) = number of partitions of n into k parts.
a(n) ~ sqrt(6) * polylog(2, 1/7)^(1/4) * 7^(n - 1/2) * exp(2*sqrt(polylog(2, 1/7)*n)) / (2*sqrt(Pi)*n^(3/4)). - Vaclav Kotesovec, May 09 2021
Showing 1-2 of 2 results.